scholarly journals Performance of Naïve Bayes in Sentiment Analysis of User Reviews Online

Author(s):  
Mir Habeebullah Shah Quadri ◽  
R. K. Selvakumar

Both sellers and buyers heavily depend on the opinions of customers in purchasing and selling products online. When it comes to text-based data, sentiment analysis of user reviews has become a prominent facet of machine learning. Text data is generally unstructured which makes opinion mining very challenging. A wide array of pre-processing and post-processing techniques need to be applied. But the major challenge is selecting the right classifier for the job. Naïve Bayes algorithm is a commonly used machine learning classifier when it comes to opinion mining and sentiment analysis. The focus of this survey is to observe and analyze the performance of Naïve Bayes algorithm in sentiment analysis of user reviews online. Recent research from a wide array of use-cases such as sentiment analysis of movie reviews, product reviews, book reviews, blog posts, microblogs and other sources of data have been taken into account. The results show that Naïve Bayes algorithm performs exceptionally well with accuracies between 75% to 99% across the board.

The World Wide Web has boosted its content for the past years, it has a vast amount of multimedia resources that continuously grow specifically in documentary data. One of the major contributors of documentary contents can be evidently found on the social media called Facebook. People or netizens on Facebook are actively sharing their opinion about a certain topic or posts that can be related to them or not. With the huge amount of accessible documentary data that are seen on the so-called social media, there are research trends that can be made by the researchers in the field of opinion mining. A netizen’s comment on a particular post can either be a negative or a positive one. This study will discuss the opinion or comment of a netizen whether it is positive or negative or how she/he feels about a specific topic posted on Facebook; this is can be measured by the use of Sentiment Analysis. The combination of the Natural Language Processing and the analytics in textual form is also known as Sentiment Analysis that is use to the extraction of data in a useful manner. This study will be based on the product reviews of Filipinos in Filipino, English and Taglish (mixed Filipino and English) languages. To categorize a comment effectively, the Naïve Bayes Algorithm was implemented to the developed web system.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-66
Author(s):  
Febri Astiko ◽  
Achmad Khodar

This study aims to design a machine learning model of sentiment analysis on Indosat Ooredoo service reviews on social media twitter using the Naive Bayes algorithm as a classifier of positive and negative labels. This sentiment analysis uses machine learning to get patterns an model that can be used again to predict new data.


2020 ◽  
Vol 1 (1) ◽  
pp. 19-26
Author(s):  
Rakhmi Khalida ◽  
Siti Setiawati

Abstract   The Government of Indonesia took steps to change the system to improve public services in traffic violations by implementing the e-ticketing system. This system is a solution for disciplining motorized motorists from committing traffic violations. The existence of e-ticketing is also a solution to prevent the delinquency of law enforcers from illegal levies, peace terms in place, to accountability of fines. In this study, sentiment analysis of the e-ticketing system or opinion mining to classify the variety of public comments that give a positive, negative or neutral impression. Twitter social media is one of the objects to express opinions because it is user friendly, updated topics, and openly accesses tweets. Opinions on Twitter are collected, then the preprocessing stage is performed, then the selection of information gain features helps reduce noise caused by irrelevant labels, the next step is the classification of sentiments with the Naïve Bayes algorithm and finally polarity sentiments. This research resulted in an accuracy of 41.82%, a precision of 50.51% and a recall of 45.45%.   Keywords: Sentiment analysis, E-ticketing, Information Gain, Naive Bayes   Abstrak   Pemerintah Indonesia melakukan langkah perubahan untuk memperbaiki sistem pelayanan publik dalam pelanggaran berlalu-lintas yaitu dengan menerapkan sistem e-Tilang. Sistem ini menjadi solusi mendisiplinkan para pengendara kendaraan bermotor dari banyaknya melakukan pelanggaran berlalu-lintas. Keberadaan e-Tilang juga menjadi solusi mencegah kenakalan penegak hukum dari pungutan liar, istilah damai ditempat, hingga akuntabilitas uang denda. Dalam penelitian ini melakukan analisis sentimen tentang sistem e-Tilang atau opinion mining untuk mengelompokan ragam komentar masyarakat yang memberikan kesan positif, negatif atau netral. Media sosial Twitter menjadi salah satu objek untuk menyampaikan opini karena user friendly, topik ter-update, dan terbuka mengakses tweet. Opini pada twitter dikumpulkan, lalu dilakukan tahapan preprocessing, selanjutnya dengan seleksi fitur information gain membantu mengurangi noise yang disebabkan oleh label-label yang tidak relevan, tahap selanjutnya adalah klasifikasi sentimen dengan algoritma Naïve Bayes dan terakhir sentimen polarity. Penelitian ini menghasilkan accuracy 41,82%, presisi 50,51% dan recall 45,45%.   Kata kunci: Analisis sentimen, E-Tilang, Information Gain, Naive Bayes


Author(s):  
Sumaya Ishrat Moyeen ◽  
Md. Sadiqur Rahman Mabud ◽  
Zannatun Nayem ◽  
Md. Al Mamun

Community and portal websites like Twitter, Facebook, Tumbler, Instagram, and LinkedIn etc. have significant impact in our day-to-day life. One of the most popular micro-blogging platforms is twitter that can provide a huge amount of data which in future can be used for various applications of opinion mining like predictions, reviews, elections, marketing etc. The users use this platform to share their views, express sentiments on various events of their daily life. Previously, many researchers have worked with twitter sentiment analysis and compared various classifiers and got the accuracy below 82%. In this work for classifying tweets into sentiments, we have used various classifiers such as Naïve Bayes, Support Vector Machine and Maximum Entropy that segregate the positive and negative tweets. Using Bigram Collocation with classifiers, we’ve acquired 88.42% accuracy. KEYWORDS: Twitter; Sentiment Classification; Machine Learning; NLTK; Python; Naïve Bayes; Support Vector Machine (SVM); Maximum Entropy


2020 ◽  
Vol 4 (2) ◽  
pp. 362-369
Author(s):  
Sharazita Dyah Anggita ◽  
Ikmah

The needs of the community for freight forwarding are now starting to increase with the marketplace. User opinion about freight forwarding services is currently carried out by the public through many things one of them is social media Twitter. By sentiment analysis, the tendency of an opinion will be able to be seen whether it has a positive or negative tendency. The methods that can be applied to sentiment analysis are the Naive Bayes Algorithm and Support Vector Machine (SVM). This research will implement the two algorithms that are optimized using the PSO algorithms in sentiment analysis. Testing will be done by setting parameters on the PSO in each classifier algorithm. The results of the research that have been done can produce an increase in the accreditation of 15.11% on the optimization of the PSO-based Naive Bayes algorithm. Improved accuracy on the PSO-based SVM algorithm worth 1.74% in the sigmoid kernel.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 204
Author(s):  
Charlyn Villavicencio ◽  
Julio Jerison Macrohon ◽  
X. Alphonse Inbaraj ◽  
Jyh-Horng Jeng ◽  
Jer-Guang Hsieh

A year into the COVID-19 pandemic and one of the longest recorded lockdowns in the world, the Philippines received its first delivery of COVID-19 vaccines on 1 March 2021 through WHO’s COVAX initiative. A month into inoculation of all frontline health professionals and other priority groups, the authors of this study gathered data on the sentiment of Filipinos regarding the Philippine government’s efforts using the social networking site Twitter. Natural language processing techniques were applied to understand the general sentiment, which can help the government in analyzing their response. The sentiments were annotated and trained using the Naïve Bayes model to classify English and Filipino language tweets into positive, neutral, and negative polarities through the RapidMiner data science software. The results yielded an 81.77% accuracy, which outweighs the accuracy of recent sentiment analysis studies using Twitter data from the Philippines.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2019 ◽  
Vol 15 (2) ◽  
pp. 247-254
Author(s):  
Heru Sukma Utama ◽  
Didi Rosiyadi ◽  
Dedi Aridarma ◽  
Bobby Suryo Prakoso

Analysis of the odd even-numbered sentiment systems in Bekasi toll using the Naïve Bayes Algorithm, is a process of understanding, extracting, and processing textual data automatically from social media. The purpose of this study was to determine the level of accuracy, recall and precision of opinion mining generated using the Naïve Bayes algorithm to provide information community sentiment towards the effectiveness of the odd system of Bekasi tiolls on social media. The research method used in this study was to do text mining in comments-comments regarding posts regarding even odd oddities on Bekasi toll on Twitter, Instagram, Youtube and Facebook. The steps taken are starting from preprocessing, transformation, datamining and evaluation, followed by information gaon feature selection, select by weight and applying NB Algorithm model. The results obtained from the study using the NB model are obtained Confusion Matrix result, namely accuracy of 79,55%, Precision of 80,51%, and Sensitivity or Recall of 80,91%. Thus this study concludes that the use of Support Vector Machine Algorithms can analyze even odd sentiments on the Bekasi toll road.


Sign in / Sign up

Export Citation Format

Share Document