Abstract
The Government of Indonesia took steps to change the system to improve public services in traffic violations by implementing the e-ticketing system. This system is a solution for disciplining motorized motorists from committing traffic violations. The existence of e-ticketing is also a solution to prevent the delinquency of law enforcers from illegal levies, peace terms in place, to accountability of fines. In this study, sentiment analysis of the e-ticketing system or opinion mining to classify the variety of public comments that give a positive, negative or neutral impression. Twitter social media is one of the objects to express opinions because it is user friendly, updated topics, and openly accesses tweets. Opinions on Twitter are collected, then the preprocessing stage is performed, then the selection of information gain features helps reduce noise caused by irrelevant labels, the next step is the classification of sentiments with the Naïve Bayes algorithm and finally polarity sentiments. This research resulted in an accuracy of 41.82%, a precision of 50.51% and a recall of 45.45%.
Keywords: Sentiment analysis, E-ticketing, Information Gain, Naive Bayes
Abstrak
Pemerintah Indonesia melakukan langkah perubahan untuk memperbaiki sistem pelayanan publik dalam pelanggaran berlalu-lintas yaitu dengan menerapkan sistem e-Tilang. Sistem ini menjadi solusi mendisiplinkan para pengendara kendaraan bermotor dari banyaknya melakukan pelanggaran berlalu-lintas. Keberadaan e-Tilang juga menjadi solusi mencegah kenakalan penegak hukum dari pungutan liar, istilah damai ditempat, hingga akuntabilitas uang denda. Dalam penelitian ini melakukan analisis sentimen tentang sistem e-Tilang atau opinion mining untuk mengelompokan ragam komentar masyarakat yang memberikan kesan positif, negatif atau netral. Media sosial Twitter menjadi salah satu objek untuk menyampaikan opini karena user friendly, topik ter-update, dan terbuka mengakses tweet. Opini pada twitter dikumpulkan, lalu dilakukan tahapan preprocessing, selanjutnya dengan seleksi fitur information gain membantu mengurangi noise yang disebabkan oleh label-label yang tidak relevan, tahap selanjutnya adalah klasifikasi sentimen dengan algoritma Naïve Bayes dan terakhir sentimen polarity. Penelitian ini menghasilkan accuracy 41,82%, presisi 50,51% dan recall 45,45%.
Kata kunci: Analisis sentimen, E-Tilang, Information Gain, Naive Bayes