scholarly journals Preparation and Microstructure Characteristics of Aluminium 6061 Alloy Based Metal Matrix Composite

The role of engineering substances within the improvement of cutting-edge era like metallic Matrix Composites (MMCs) have evoked a eager hobby nowadays for capacity programs in aerospace and car industries as a result of their advanced power. Aluminium (6061) and Boron Carbide (Powder) is chosen for reinforcement material and matrix respectively. Al–B4C composites containing special weight probabilities 3.5 %, 7.0% and 10.5% of B4C have been fabricated by way of stir casting Technique. Experiments are conducted with the aid of various weight fraction of B4C (3.5%, 7.0% and 10.5%), at the same time as maintaining all other parameters regular. The compositions of their small structural options are determined through scientific discipline magnifier..

2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


The function of engineering materials in the development of contemporary technology like steel Matrix Composites (MMCs) have evoked a keen hobby these days for capacity packages in aerospace and automobile industries as a result of their superior power to weight ratio and excessive temperature resistance. Aluminium (6061) and silicon Carbide (Powder) has been selected as matrix and reinforcement cloth respectively. On this gift look at an attempt is made to broaden Aluminium primarily based silicon carbide particulate MMCs. Stir casting is one of the maximum cost powerful technique of processing MMC and to gain homogenous dispersion of ceramic material. Al–SiC composites containing special weight chance three. Five %, 7.Zero% and 10.5% of B4C have been fabricated via way of stir casting technique. Experiments are conducted with the aid of numerous weight fraction of SiC (3.5%, 7.Zero% and 10.Five%), on the equal time as preserving all different parameters normal. The distribution of reinforcement and percent of composition are examined thru Optical Emission Spectrometer (OES). The compositions in their micro structural features were determined via Metallurgical Microscope.


Author(s):  
T S Mahmoud ◽  
F H Mahmoud ◽  
H M Zakaria ◽  
T A Khalifa

This article describes the effect of the squeezing process on the porosity of partially remelted A319/20 vol% SiC particulate (SiCp) reinforced metal matrix composites (MMCs). The composite alloy was originally fabricated by a stir casting technique. The effect of squeezing process parameters such as the squeezing time, compressive stress, and the liquid weight fraction inside the melt on the overall porosity was extensively studied. Moreover, pin-on-disc wear tests were conducted to evaluate the effect of porosity on the wear resistance of the composites. It was found that the squeezed composites have lower overall porosity when compared with the as-cast composites. The lowest overall porosity content was observed when the squeezing process variables were at their peak values. After squeezing, the gas-bubble voids were practically eliminated, whereas the inter-particle voids were significantly reduced but not completely eliminated due to fracture of SiCp and generation of new inter-particle microvoids. Wear test results showed that the wear resistance of the squeezed composites was significantly higher than the as-cast composites due to the lower porosity content of the squeezed composites. The wear resistance of the squeezed composites depends significantly on the overall porosity. It has been found that the wear rate of the squeezed composites increase with increasing overall porosity.


2018 ◽  
Vol 16 (1) ◽  
pp. 726-731 ◽  
Author(s):  
Tennur Gülşen Ünal ◽  
Ege Anıl Diler

AbstractThe effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with microsized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.


2017 ◽  
Vol 25 (3) ◽  
pp. 209-214 ◽  
Author(s):  
G. Venkatachalam ◽  
A. Kumaravel

This paper presents the characterization of A356 composite reinforced with fly ash and basalt ash produced by stir casting method. Aluminium metal matrix composites (AMC) are used in wide variety of applications such as structural, aerospace, marine, automotive etc. Stir casting is cost effective manufacturing process and it is useful to enhance the attractive properties of AMCs. Three sets of hybrid AMC are prepared by varying the weight fraction of the reinforcements (3% basalt + 7% fly ash, 5% basalt + 5% fly, 7% basalt + 3% fly ash). The effect of reinforcements on the mechanical properties of the hybrid composites such as hardness, tensile, compressive and impact strength were studied. The obtained results reveal that tensile, compressive and impact strength was increased when weight fraction of fly ash increased, whereas the hardness increases when weight fraction of the basalt ash increased. Microscopic study reveals the dispersion of the reinforcements in the matrix.


Author(s):  
Srinivasa Prasad Katrenipadu ◽  
Swami Naidu Gurugubelli

Nano-fly ash particles reinforced Al-10wt%Mg alloy matrix composites produced by stir-casting method were tested for their ageing response. Ageing studies were performed at 160 °C, 200 °C and 240 °C temperatures and a maximum peak hardness of 142 VHN was observed during ageing at 200 °C for the composite with 10 wt% nano fly ash reinforcement. This is due to rapid nucleation and growth of βI particles at this temperature. Experiments were designed for different compositions and different ageing temperatures on the basis of the Design of Experiments technique. The factorial design is considered to improve the reliability of results and to reduce the size of experimentation without loss of accuracy. A model to predict the ageing behaviour of the composites was developed with the terms of 5, 10 and 15% weight fraction of fly ash at 160 °C, 200 °C and 240 °C ageing temperatures. The developed regression model was validated by statistical software MINITAB-R17.1.0. It was found that the developed regression model could be effectively used to predict the ageing behavior at 95% confidence level.


Sign in / Sign up

Export Citation Format

Share Document