scholarly journals Mechanical Properties of Concrete with Mineral Admixtures - An Experimental Programme

Concrete is a general composite material used in construction industry over many decades. Due to rapid Growth of infrastructure, the demand of concrete is raising day by day. This composite material mainly made up of cementitious material such as cement and natural sand. This cement production results in release of large amount of CO2 which directly effects environment pollution and Global warming and also, the usage of natural sand leads to environmental degradation. So, better way to reduction in CO2 emission by minimizing cement content with some other puzolonic materials such as Metaakolin,Fly ash, Ground granulated blast furnace slag(GGBS) and This present Experiment is for to observe the cube and cylinder specimens strength of M40 grade of concrete at 7 days and 28 days with partial replacement of cement with ground granulated blast furnace slag ,Metakaolin and flyash @ 15%,30%,45% of binding material and natural sand with manufactured sand (M-sand)

Concrete is one of the most suitable materials in the world which are used for construction. It becomes more versatile because of his suitability in almost all situations. Reinforced structures are subject to corrosion by various means. Carbonation is one of these means that causes corrosion of reinforced concrete structures. The service life of the structures has been reduced due to the deterioration of the structures because of the corrosion of the reinforced concrete due to carbonation. This paper focuses on the effect of carbonation on the mechanical properties of concrete composed of mineral admixtures, such as ground granulated blast furnace slag and silica fume, by partial replacement of the cement. In this experiment, silica fume replaced cement in 5%, 10%, 15% and ground granulated blast furnace slag replaced the cement in 10%, 20%, 30%. Samples such as cubes, cylinders and prisms were casted and cured. Certain number of these specimens were also placed in carbonation chamber and tested for compressive strength, tensile strength and flexural strength. Normal concrete samples are also tested and the results are compared.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Naraindas Bheel ◽  
Suhail Ahmed Abbasi ◽  
Paul Awoyera ◽  
Oladimeji B. Olalusi ◽  
Samiullah Sohu ◽  
...  

The growing demand for cement has created a significant impact on the environment. Cement production requires huge energy consumptions; however, Pakistan is currently facing a severe energy crisis. Researchers are therefore engaged with the introduction of agricultural/industrial waste materials with cementitious properties to reduce not only cement production but also energy consumption, as well as helping protect the environment. This research aims to investigate the influence of binary cementitious material (BCM) on fresh and hardened concrete mixes prepared with metakaolin (MK) and ground granulated blast furnace slag (GGBFS) as a partial replacement of cement. The replacement proportions of BCM used were 0%, 5%, 10%, 15%, and 20% by weight of cement. A total of five mixes were prepared with 1 : 1.5 : 3 mix proportion at 0.54 water-cement ratios. A total of 255 concrete specimens were prepared to investigate the compressive, tensile, and flexural strength of concrete after 7, 28, and 56 days, respectively. It was perceived that the workability of concrete mixes decreased with an increasing percentage of MK and GGBFS. Also, the density and permeability of concrete decreased with an increasing quantity of BCM after 28 days. Conversely, the compressive, tensile, and flexural strength of concrete were enhanced by 12.28%, 9.33%, and 9.93%, respectively, at 10% of BCM after 28 days. The carbonation depth reduced with a rise in content of BCM (up to 10%) and then later improved after 28, 90, and 180 days. Moreover, the effect of chloride attack in concrete is reduced with the inclusion of BCM after 28 and 90 days. Similarly, the drying shrinkage of concrete decreased with an increase in the content of BCM after 40 days.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Sign in / Sign up

Export Citation Format

Share Document