manufactured sand
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 128)

H-INDEX

15
(FIVE YEARS 6)

Author(s):  
Kiran M.Mane ◽  
◽  
S.P. Chavan ◽  
S.A. Salokhe ◽  
P.A. Nadgouda ◽  
...  

Large amounts of natural fine aggregate (NFA) and cement are used in building, which has major environmental consequences. This view of industrial waste can be used in part as an alternative to cement and part of the sand produced by the crusher as fine aggregate, similar to slag sand (GGBFS), fly ash, metacaolin, and silica fume. Many times, there are issues with the fresh characteristics of concrete when using alternative materials. The ANN tool is used in this paper to develop a Matlab software model that collapses concrete made with pozzolanic material and partially replaces natural fine aggregate (NFA) with manufactured sand (MS). Predict. The slump test was carried out in reference with I.S11991959, and the findings were used to create the artificial neural network (ANN) model. To mimic the formation, a total of 131 outcome values are employed, with 20% being used for model testing and 80% being used for model training. 25 enter the material properties to determine the concrete slump achieved by partially substituting pozzolan for cement and artificial sand (MS) for natural fine aggregate (NFA). According to studies, the workability of concrete is critically harmed as the amount of artificial sand replacing natural sand grows. The ANN model's results are extremely accurate, and they can forecast the slump of concrete prepared by partly substituting natural fine aggregate (NFA) and artificial sand (MS) with pozzolan.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Shuhua Peng ◽  
Yu Wu ◽  
Jing Tao ◽  
Jianbin Chen

Airflow classification is the key technology for the dry separation of manufactured sand. To solve the problem of low separation accuracy and poor gradation grade, the classification process of manufactured sand under different inlet and outlet airflow velocities changes in the multi-air inlet classifier is simulated by using Barracuda based on Computational Particle Fluid Dynamics (CPFD) method. The influence of various airflow velocity in air inlets and outlet on the sand classification is analyzed. The optimal combination of airflow velocity that meets the design goals is obtained. The results show that the airflow velocity and location of the air inlet and outlet have a significant impact on medium-grained (0.15~1.18 mm) and fine-grained (0.075~0.3 mm) sand. Adjusting the airflow velocity at air inlet 2 and air outlet can most effectively change the overall sand separation effect, while 41 m/s (inlet 2) and 6 m/s (outlet) would be the best velocity combination.


2022 ◽  
Author(s):  
Mianheng Lai ◽  
Kaijie Wu ◽  
Xiaoling Ou ◽  
Mengru Zeng ◽  
Chengwei Li ◽  
...  

2022 ◽  
Vol 317 ◽  
pp. 126114
Author(s):  
Elisabeth Leite Skare ◽  
Shohreh Sheiati ◽  
Rolands Cepuritis ◽  
Ernst Mørtsell ◽  
Sverre Smeplass ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7596
Author(s):  
Narayanan Subash ◽  
Siva Avudaiappan ◽  
Somanathan Adish Kumar ◽  
Mugahed Amran ◽  
Nikolai Vatin ◽  
...  

The aim of this research was to find the best alternative for river sand in concrete. In both geopolymer concrete (GPC) and cement concrete (CC), the fine aggregates are replaced with various sustainable mineral ashes, and mechanical and durability tests are conducted. Specimens for tests were made of M40 grade GPC and CC, with five different soil types as river sand substitute. The materials chosen to replace the river sand are manufactured sand (M-sand), sea sand, copper slag, quarry dust, and limestone sand as 25%, 50%, 75%, and 100%, respectively by weight. GPF50 and CC50 were kept as control mixes for GPC and CC, respectively. The test results of respective concretes are compared with the control mix results. From compressive strength results, M-sand as a fine aggregate had an increase in strength in every replacement level of GPC and CC. Additionally, copper slag is identified with a significant strength reduction in GPC and CC after 25% replacement. Copper slag, quarry dust, and limestone sand in GPC and CC resulted in considerable loss of strength in all replacement levels except for 25% replacement. The cost of GPC and CC is mixed with the selected fine aggregate replacement materials which arrived. Durability and cost analyses are performed for the advisable mixes and control mixes to have a comparison. Durability tests, namely, water absorption and acid tests and water permeability and thermal tests are conducted and discussed. Durability results also indicate a positive signal to mixes with M-sand. The advisable replacement of river sand with each alternative is discussed.


2021 ◽  
Vol 65 (2) ◽  
pp. 1-18
Author(s):  
Elisabeth Leite Skare ◽  
Rolands Cepuritis ◽  
Ernst Mørtsell ◽  
Sverre Smeplass ◽  
Jon Spangenberg ◽  
...  

Abstract There is a need for simple but precise prediction models for proportioning concrete with manufactured sand, for use in ready-mix concrete production. For the last two decades, the particle-matrix model has been used in Norway for proportioning and prediction of concrete flow based on the properties and proportions of two concrete phases: coarse particles and filler modified cement paste (matrix). This paper presents experimental testing of 117 cement pastes of which 107 contain filler, i.e. particles < 125 microns, from manufactured sand. Based on compositions and properties of ingoing materials in these mixes, an empirical equation is developed that predicts the rheological properties plastic viscosity, yield stress, flow resistance ratio and mini slump flow. Optimization by regression analysis provides a practical microproportioning equation that readily can be used as input in concrete proportioning with the particle-matrix model. The equation provides a coefficient of determination R2 = 0.98 for plastic viscosity, R2 = 0.95 for mini slump flow, R2 = 0.91 for flow resistance ratio and R2 = 0.80 for yield stress.


Author(s):  
Sindhu Vaardini U ◽  
Pon Soundarya M

Disposal of large quantity of plastic causes land, water, and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed shredded plastic waste in concrete. Several tests are conducted such as compressive strength of cube, compressive strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using shredded plastic aggregate. Replacement of fine aggregate weight by 0%, 5%, 10%, 15%, 20% with shredded plastic fine (PF) aggregate and manufactured sand (M-Sand). Totally 30 cubes, 30 cylinders and 30 prisms are casted to identify the compressive strength, cylindrical compressive strength, and flexural strength respectively. Casted specimens are tested at 7, 14 and 28 days. The identified results from concrete using shredded plastic aggregate are compared with conventional concrete. Result shows that initially there is increase in mechanical properties then there is reduction in mechanical properties due to addition of shredded plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and shredded plastic aggregate.


2021 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Honghong Ye ◽  
Delin Zeng ◽  
Yong Yang ◽  
Xingbo Fan ◽  
Wei Wang ◽  
...  

Considering actual construction conditions of Binchuan-Heqing Highway, this paper provides the C50 mix ratio conforming to engineering requirements by strictly controlling the quality of raw materials, optimizing the design of mix ratio scientifically, preparing superior C50 concrete 0 with manufactured sand, and optimizing the concrete mix ratio based on the adjustment of fly ash replacement, water-cement ratio, polycarboxylate-type water reducer mixing amount, sand ratio, etc. The result indicates that, the water-cement ratio has a great influence on the concrete strength, and if the ratio of coal ash is high in the binding material, the early compressive strength of the concrete will increase slowly.


Sign in / Sign up

Export Citation Format

Share Document