scholarly journals Proposed a Content-Based Image Retrieval System Based on the Shape and Texture Features

In this paper, we proposed a fusion feature extraction method for content based image retrieval. The feature is extracted by focusing on the texture and shape features of the visual image by using the Local Binary Pattern (LBP – texture feature) and Edge Histogram Descriptor (EHD – shape feature). The SVD is used for decreasing the number of the feature vector of images. The Kd-tree is used for reducing the retrieval time. The input to this system is a query image and Database (the reference images) and the output is the top n most similar images for the query image. The proposed system is evaluated by using (precision and recall) to measure the retrieval effectiveness. The values of the recall are between [43% –93%] and the average recall is 64.3%. The values of precision are between [30%-100%] and the average is 72.86% for the entire system and for both databases

Author(s):  
Priyesh Tiwari ◽  
Shivendra Nath Sharan ◽  
Kulwant Singh ◽  
Suraj Kamya

Content based image retrieval (CBIR), is an application of real-world computer vision domain where from a query image, similar images are searched from the database. The research presented in this paper aims to find out best features and classification model for optimum results for CBIR system.Five different set of feature combinations in two different color domains (i.e., RGB & HSV) are compared and evaluated using Neural Network Classifier, where best results obtained are 88.2% in terms of classifier accuracy. Color moments feature used comprises of: Mean, Standard Deviation,Kurtosis and Skewness. Histogram features is calculated via 10 probability bins. Wang-1k dataset is used to evaluate the CBIR system performance for image retrieval.Research concludes that integrated multi-level 3D color-texture feature yields most accurate results and also performs better in comparison to individually computed color and texture features.


2021 ◽  
Vol 5 (1) ◽  
pp. 28
Author(s):  
Fawzi Abdul Azeez Salih ◽  
Alan Anwer Abdulla

The rapid advancement and exponential evolution in the multimedia applications raised the attentional research on content-based image retrieval (CBIR). The technique has a significant role for searching and finding similar images to the query image through extracting the visual features. In this paper, an approach of two layers of search has been developed which is known as two-layer based CBIR. The first layer is concerned with comparing the query image to all images in the dataset depending on extracting the local feature using bag of features (BoF) mechanism which leads to retrieve certain most similar images to the query image. In other words, first step aims to eliminate the most dissimilar images to the query image to reduce the range of search in the dataset of images. In the second layer, the query image is compared to the images obtained in the first layer based on extracting the (texture and color)-based features. The Discrete Wavelet Transform (DWT) and Local Binary Pattern (LBP) were used as texture features. However, for the color features, three different color spaces were used, namely RGB, HSV, and YCbCr. The color spaces are utilized by calculating the mean and entropy for each channel separately. Corel-1K was used for evaluating the proposed approach. The experimental results prove the superior performance of the proposed concept of two-layer over the current state-of-the-art techniques in terms of precision rate in which achieved 82.15% and 77.27% for the top-10 and top-20, respectively.


2011 ◽  
Vol 61 (5) ◽  
pp. 415 ◽  
Author(s):  
Madasu Hanmandlu ◽  
Anirban Das

<p>Content-based image retrieval focuses on intuitive and efficient methods for retrieving images from databases based on the content of the images. A new entropy function that serves as a measure of information content in an image termed as 'an information theoretic measure' is devised in this paper. Among the various query paradigms, 'query by example' (QBE) is adopted to set a query image for retrieval from a large image database. In this paper, colour and texture features are extracted using the new entropy function and the dominant colour is considered as a visual feature for a particular set of images. Thus colour and texture features constitute the two-dimensional feature vector for indexing the images. The low dimensionality of the feature vector speeds up the atomic query. Indices in a large database system help retrieve the images relevant to the query image without looking at every image in the database. The entropy values of colour and texture and the dominant colour are considered for measuring the similarity. The utility of the proposed image retrieval system based on the information theoretic measures is demonstrated on a benchmark dataset.</p><p><strong>Defence Science Journal, 2011, 61(5), pp.415-430</strong><strong><strong>, DOI:http://dx.doi.org/10.14429/dsj.61.1177</strong></strong></p>


10.29007/w4sr ◽  
2018 ◽  
Author(s):  
Yin-Fu Huang ◽  
Bo-Rong Chen

With the rapid progress of network technologies and multimedia data, information retrieval techniques gradually become content-based, and not text-based yet. In this paper, we propose a content-based image retrieval system to query similar images in a real image database. First, we employ segmentation and main object detection to separate the main object from an image. Then, we extract MPEG-7 features from the object and select relevant features using the SAHS algorithm. Next, two approaches “one-against- all” and “one-against-one” are proposed to build the classifiers based on SVM. To further reduce indexing complexity, K-means clustering is used to generate MPEG-7 signatures. Thus, we combine the classes predicted by the classifiers and the results based on the MPEG-7 signatures, and find out the similar images to a query image. Finally, the experimental results show that our method is feasible in image searching from the real image database and more effective than the other methods.


Author(s):  
K Rajalakshmi ◽  
V Krishna Dharshini ◽  
S Selva Meena

Content-Based Image Retrieval is a process to retrieve the similar images from the large set of image database corresponding to the query image. In CBIR low level or pixel level features such as color, texture and shape of the images are extracted and on the basis of similarity matching algorithm the required similar kind of images are retrieved from the image database. To understand the evaluation and evolution of CBIR system various research was studied and various research is going on this way also. In this paper, we have discussed some of the popular pixel level feature extraction techniques for Content-Based Image Retrieval and we also present here about the performance of each technique.


2018 ◽  
Vol 17 (2) ◽  
pp. 7215-7225
Author(s):  
Bohar Singh ◽  
Mrs. Mehak Aggarwal

Recently, digital content has become a significant and inevitable asset of or any enterprise and the need for visual content management is on the rise as well. There has been an increase in attention towards the automated management and retrieval of digital images owing to the drastic development in the number and size of image databases. A significant and increasingly popular approach that aids in the retrieval of image data from a huge collection is called Content-based image retrieval (CBIR). Content-based image retrieval has attracted voluminous research in the last decade paving way for development of numerous techniques and systems besides creating interest on fields that support these systems. CBIR indexes the images based on the features obtained from visual content so as to facilitate speedy retrieval. Content based image retrieval from large resources has become an area of wide interest nowadays in many applications. In this thesis work, we present a steerable pyramid based image retrieval system that uses color, contours and texture as visual features to describe the content of an image region. To speed up retrieval and similarity computation, the database images are classified and the extracted regions are clustered according to their feature vectors using KNN algorithm We have used steerable pyramid to extract texture features from query image and classified database images and store them in feature features. Therefore to answer a query our system does not need to search the entire database images; instead just a number of candidate images are required to be searched for image similarity.  Our proposed system has the advantage of increasing the retrieval accuracy and decreasing the retrieval time.


Author(s):  
HARSHADA ANAND KHUTWAD ◽  
RAVINDRA JINADATTA VAIDYA

Content Based Image Retrieval is an interesting and most emerging field in the area of ‘Image Search’, finding similar images for the given query image from the image database. Current approaches include the use of color, texture and shape information. Considering these features in individual, most of the retrievals are poor in results and sometimes we are getting some non relevant images for the given query image. So, this dissertation proposes a method in which combination of color and texture features of the image is used to improve the retrieval results in terms of its accuracy. For color, color histogram based color correlogram technique and for texture wavelet decomposition technique is used. Color and texture based image


2021 ◽  
Vol 8 (7) ◽  
pp. 97-105
Author(s):  
Ali Ahmed ◽  
◽  
Sara Mohamed ◽  

Content-Based Image Retrieval (CBIR) systems retrieve images from the image repository or database in which they are visually similar to the query image. CBIR plays an important role in various fields such as medical diagnosis, crime prevention, web-based searching, and architecture. CBIR consists mainly of two stages: The first is the extraction of features and the second is the matching of similarities. There are several ways to improve the efficiency and performance of CBIR, such as segmentation, relevance feedback, expansion of queries, and fusion-based methods. The literature has suggested several methods for combining and fusing various image descriptors. In general, fusion strategies are typically divided into two groups, namely early and late fusion strategies. Early fusion is the combination of image features from more than one descriptor into a single vector before the similarity computation, while late fusion refers either to the combination of outputs produced by various retrieval systems or to the combination of different rankings of similarity. In this study, a group of color and texture features is proposed to be used for both methods of fusion strategies. Firstly, an early combination of eighteen color features and twelve texture features are combined into a single vector representation and secondly, the late fusion of three of the most common distance measures are used in the late fusion stage. Our experimental results on two common image datasets show that our proposed method has good performance retrieval results compared to the traditional way of using single features descriptor and also has an acceptable retrieval performance compared to some of the state-of-the-art methods. The overall accuracy of our proposed method is 60.6% and 39.07% for Corel-1K and GHIM-10K ‎datasets, respectively.


Selection of feature extraction method is incredibly recondite task in Content Based Image Retrieval (CBIR). In this paper, CBIR is implemented using collaboration of color; texture and shape attribute to improve the feature discriminating property. The implementation is divided in to three steps such as preprocessing, features extraction, classification. We have proposed color histogram features for color feature extraction, Local Binary Pattern (LBP) for texture feature extraction, and Histogram of oriented gradients (HOG) for shape attribute extraction. For the classification support vector machine classifier is applied. Experimental results show that combination of all three features outperforms the individual feature or combination of two feature extraction techniques


Sign in / Sign up

Export Citation Format

Share Document