scholarly journals Content-Based Image Retrieval System for Real Images

10.29007/w4sr ◽  
2018 ◽  
Author(s):  
Yin-Fu Huang ◽  
Bo-Rong Chen

With the rapid progress of network technologies and multimedia data, information retrieval techniques gradually become content-based, and not text-based yet. In this paper, we propose a content-based image retrieval system to query similar images in a real image database. First, we employ segmentation and main object detection to separate the main object from an image. Then, we extract MPEG-7 features from the object and select relevant features using the SAHS algorithm. Next, two approaches “one-against- all” and “one-against-one” are proposed to build the classifiers based on SVM. To further reduce indexing complexity, K-means clustering is used to generate MPEG-7 signatures. Thus, we combine the classes predicted by the classifiers and the results based on the MPEG-7 signatures, and find out the similar images to a query image. Finally, the experimental results show that our method is feasible in image searching from the real image database and more effective than the other methods.

Author(s):  
S. M. Zakariya ◽  
Rashid Ali ◽  
Nesar Ahmad

Content-based image retrieval (CBIR) uses the visual features of an image such as color, shape and texture to represent and index the image. In a typical content based image retrieval system, a set of images that exhibit visual features similar to that of the query image are returned in response to a query. CLUE (CLUster based image rEtrieval) is a popular CBIR technique that retrieves images by clustering. In this paper, we propose a CBIR system that also retrieves images by clustering just like CLUE. But, the proposed system combines all the features (shape, color, and texture) with a threshold for the purpose. The combination of all the features provides a robust feature set for image retrieval. We evaluated the performance of the proposed system using images of varying size and resolution from image database and compared its performance with that of the other two existing CBIR systems namely UFM and CLUE. We have used four different resolutions of image. Experimentally, we find that the proposed system outperforms the other two existing systems in ecery resolution of image.


Author(s):  
K Rajalakshmi ◽  
V Krishna Dharshini ◽  
S Selva Meena

Content-Based Image Retrieval is a process to retrieve the similar images from the large set of image database corresponding to the query image. In CBIR low level or pixel level features such as color, texture and shape of the images are extracted and on the basis of similarity matching algorithm the required similar kind of images are retrieved from the image database. To understand the evaluation and evolution of CBIR system various research was studied and various research is going on this way also. In this paper, we have discussed some of the popular pixel level feature extraction techniques for Content-Based Image Retrieval and we also present here about the performance of each technique.


2020 ◽  
Vol 17 (2(SI)) ◽  
pp. 0694
Author(s):  
Fathala Ali et al.

            An image retrieval system is a computer system for browsing, looking and recovering pictures from a huge database of advanced pictures. The objective of Content-Based Image Retrieval (CBIR) methods is essentially to extract, from large (image) databases, a specified number of images similar in visual and semantic content to a so-called query image. The researchers were developing a new mechanism to retrieval systems which is mainly based on two procedures. The first procedure relies on extract the statistical feature of both original, traditional image by using the histogram and statistical characteristics (mean, standard deviation). The second procedure relies on the T- test to measure the independence between more than images, (coefficient of correlate, T- test, Level of significance, find the decision), and, through experimental test, it was found that this proposed method of retrieval technique is powerful than the classical retrieval System.


In this paper, we proposed a fusion feature extraction method for content based image retrieval. The feature is extracted by focusing on the texture and shape features of the visual image by using the Local Binary Pattern (LBP – texture feature) and Edge Histogram Descriptor (EHD – shape feature). The SVD is used for decreasing the number of the feature vector of images. The Kd-tree is used for reducing the retrieval time. The input to this system is a query image and Database (the reference images) and the output is the top n most similar images for the query image. The proposed system is evaluated by using (precision and recall) to measure the retrieval effectiveness. The values of the recall are between [43% –93%] and the average recall is 64.3%. The values of precision are between [30%-100%] and the average is 72.86% for the entire system and for both databases


2020 ◽  
Vol 38 (5A) ◽  
pp. 719-727
Author(s):  
Beshaier A. Abdulla ◽  
Yossra H. Ali ◽  
Nuha J. Ibrahim

In the last years, many types of research have introduced different methods and techniques for a correct and reliable image retrieval system. The goal of this paper is a comparison study between two different methods which are the Grey level co-occurrence matrix and the Hu invariants moments, and this study is done by building up an image retrieval system employing each method separately and comparing between the results. The Euclidian distance measure is used to compute the similarity between the query image and database images. Both systems are evaluated according to the measures that are used in detection, description, and matching fields which are precision, recall, and accuracy, and addition to that mean square error (MSE) and structural similarity index (SSIM) is used.  And as it shows from the results the Grey level co-occurrence matrix (GLCM) had outstanding and better results from the Hu invariants moment method.


2020 ◽  
Vol 8 (6) ◽  
pp. 4597-4605

Development of Content-Based Image Retrieval systems supports retrieval of similar images based on selected features. Selection of appropriate features for this process is a difficult task. In this regard, deep learning concept helps in choosing appropriate features for retrieval. In this work, Content-Based Image Retrieval system is proposed using Convolution Neural Network known as Residual Neural Network model. The dataset used to build retrieval system is collection of web images 50,000 of 250 categories. The model is trained on 40% of image data and tested on 60% of data. When user submits a query image from the client-side, similar features are extracted by the model on server-side. Later, the features of query image are compared with trained images data and similarity is measured using the metric of Euclidean distance. The retrieved resultant images are displayed on Graphical User Interface. The results are comparatively higher with the existing systems. The proposed work is also compared with Google’s Image retrieval system for random query images and our proposed work has shown a better performance by 14.27%.


2018 ◽  
Vol 32 (3) ◽  
pp. 362-385 ◽  
Author(s):  
Shrikant A. Mehre ◽  
Ashis Kumar Dhara ◽  
Mandeep Garg ◽  
Naveen Kalra ◽  
Niranjan Khandelwal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document