Content-Based Image Retrieval System for Real Images
With the rapid progress of network technologies and multimedia data, information retrieval techniques gradually become content-based, and not text-based yet. In this paper, we propose a content-based image retrieval system to query similar images in a real image database. First, we employ segmentation and main object detection to separate the main object from an image. Then, we extract MPEG-7 features from the object and select relevant features using the SAHS algorithm. Next, two approaches “one-against- all” and “one-against-one” are proposed to build the classifiers based on SVM. To further reduce indexing complexity, K-means clustering is used to generate MPEG-7 signatures. Thus, we combine the classes predicted by the classifiers and the results based on the MPEG-7 signatures, and find out the similar images to a query image. Finally, the experimental results show that our method is feasible in image searching from the real image database and more effective than the other methods.