scholarly journals Intensity Weight Factor Based Sentiment Prediction Analysis on Tweets

Advances in the field of sentiment analysis are quick and purposeful to explore the views or articles available on various social media platforms through the techniques of machine learning with emotions, topic analysis or polarization calculations. Although employing various machine learning techniques and emotion analysis tools, there is a direct need for modern methods. To address these challenges, the contribution of this paper involves adopting a new approach that includes emotional analysts that integrates emotional intensity and machine learning. In addition, this document also provides a comparison of sentiment analysis techniques in analyzing political views through the application of machine learning algorithms such as Naive Bayes and KNN.

2020 ◽  
Vol 7 (10) ◽  
pp. 380-389
Author(s):  
Asogwa D.C ◽  
Anigbogu S.O ◽  
Anigbogu G.N ◽  
Efozia F.N

Author's age prediction is the task of determining the author's age by studying the texts written by them. The prediction of author’s age can be enlightening about the different trends, opinions social and political views of an age group. Marketers always use this to encourage a product or a service to an age group following their conveyed interests and opinions. Methodologies in natural language processing have made it possible to predict author’s age from text by examining the variation of linguistic characteristics. Also, many machine learning algorithms have been used in author’s age prediction. However, in social networks, computational linguists are challenged with numerous issues just as machine learning techniques are performance driven with its own challenges in realistic scenarios. This work developed a model that can predict author's age from text with a machine learning algorithm (Naïve Bayes) using three types of features namely, content based, style based and topic based. The trained model gave a prediction accuracy of 80%.


Author(s):  
Alaeddine Boukhalfa ◽  
Nabil Hmina ◽  
Habiba Chaoni

Currently, information technology is used in all the life domains, multiple devices produce data and transfer them across the network, these transfers are not always secured, they can contain new menaces invisible by the current security devices. Moreover, the large amount and variety of the exchanged data cause difficulties related to the detection time. To solve these issues, we suggest in this paper, a new approach based on storing the large amount and variety of network traffic data employing Big Data techniques, and analyzing these data with Machine Learning algorithms, in a distributed and parallel way, in order to detect new hidden intrusions with less processing time. According to the results of the experiments, the detection accuracy of the Machine Learning methods reaches 99.9 %, and their processing time has been reduced considerably by applying them in a parallel and distributed way, which proves that our proposed model is effective for the detection of new intrusions.


Author(s):  
O. E. Ojo ◽  
A. Gelbukh ◽  
H. Calvo ◽  
O. O. Adebanji

In this work, a study investigation was carried out using n-grams to classify sentiments with different machine learning and deep learning methods. We used this approach, which combines existing techniques, with the problem of predicting sequence tags to understand the advantages and problems confronted with using unigrams, bigrams and trigrams to analyse economic texts. Our study aims to fill the gap by evaluating the performance of these n-grams features on different texts in the economic domain using nine sentiment analysis techniques and found more insights. We show that by comparing the performance of these features on different datasets and using multiple learning techniques, we extracted useful intelligence. The evaluation involves assessing the precision, recall, f1-score and accuracy of the function output of the several machine learning algorithms proposed. The methods were tested using Amazon, IMDB, Reuters, and Yelp economic review datasets and our comprehensive experiment shows the effectiveness of n-grams in the analysis of sentiments.


2021 ◽  
Vol 4 (2) ◽  
pp. 149-152
Author(s):  
Ameema Sattar ◽  
Joddat Fatima

In our daily life, people’s opinions and experiences are important sources of information. To measure the feeling of people’s opinions the term used that is called sentiment analysis. The text is the main method of communicating on the Internet in modern digital time. Sentiment analysis captures the user’s views, moods, and their opinion related to the specific services provided by the business organization in a real-time. This research focuses on Roman Urdu reviews. It has three basic classes: negative, positive, and neutral where reviews are classified. The proposed method is Analysis of different machine learning algorithms with different datasets has made and a comparison shows, SVM performs the best result on used data sets, a clear result in the form of accuracy, precision, recall, and f1 score shows the results against the specific techniques against the dataset.


2017 ◽  
Vol 4 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


2021 ◽  
Vol 04 (01) ◽  
Author(s):  
Mahmood Umar ◽  

Nowadays, social media platforms, blogs, and e-commerce are commonly use to express opinion on politics, movies, products, education respectively; for election forecasting, business boosting and improvement of teaching and learning. As a result, data generation becomes easier; producing big data which requires appropriate techniques and tools to analyse easily, accurately and timely. Thus, making sentiment analysis very demanding research area. This study will investigate on what basis (sentiment classification level) or area of application (data source) do supervised machine learning approaches particularly Support Vector Machine (SVM), Naïve Bayes, and Maximum Entropy algorithms, and other technique-lexicon-based approach give the best result in sentiment analysis. Based on the review of the literature there is a contradiction on the point that SVM generated the best result in analyzing student sentiment on document level. This study also discovers that sentiment analysis differs from system to system based on polarity (types of the classes to predict: positive or negative, subjective or objective), different levels of classification (sentence, phrase, or document level) and language that is processed. This research produces a taxonomy which serves as a guide for the choice of techniques in sentiment analysis. The taxonomy explores the sentiment classification levels and data preprocessing stages. It also explores that sentiment analysis techniques were organised in to three (3) groups; Machine learning, Lexicon and hybrid or combination. The machine learning techniques were sub-grouped in to two (2) namely; supervised and unsupervised. The supervised were organized in to two (2): Classification and Regression. un-supervised machine learning techniques includes clustering and association. The clustering technique consist of k-means. Decision tree which is a classification based under supervised type of machine learning technique consist of random forest,(Akinkunmi, 2019) while the ruled-based classifiers consist of confidence criterion and support criterion. The commonly used tools are Weka, Python compiler, and R programming tool.


2021 ◽  
Vol 12 (3) ◽  
pp. 1738-1744
Author(s):  
Shahzad Qaiser Et.al

The availability of the data has increased tremendously due to the excess usage of social media platforms like Twitter and Facebook. Due to the abundant availability of data, scientists, businesses, educationalists and other people working under different roles have started using Sentiment Analysis (SA) to get in-depth knowledge about the sentiments of the people regarding any topic of interest. There are many techniques to implement SA, and one of them is Machine Learning (ML). This study is focused on the comparison of ancient ML methods such as Naïve Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM), and a modern method, i.e., Deep Learning (DL). The ML techniques are applied to a single dataset to compare their performance in terms of accuracy to understand how they perform against each other. The study found that DL performed the best with 96.41% accuracy followed by NB and SVM with 87.18% and 82.05% respectively. DT performed the poorest with 68.21% accuracy.


2020 ◽  
pp. 143-163
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sign in / Sign up

Export Citation Format

Share Document