scholarly journals EFFECIENCY OF IMMOBILIZED POLYPHENOL OXIDASE ON SOME TEXTILE DYES DEGRADATION USING BATCH OPERATION SYSTEM BY PACKED BED BIOREACTOR

2019 ◽  
Vol 50 (3) ◽  
Author(s):  
S. I. Hussein

In the current study, three types of common plants, namely Tomato (Solanum lycopersicum), Cucumber (Cucumis sativus) and Orange (Citrus sinensis) were obtained and screened for their polyphenol oxidase (PPO) activity, Among the three plants, Solanum lycopersicum was chosen with maximum enzymatic activity, it had the highest productivity of the enzyme (23733 U/mg protein).The PPO from Solanum lycopersicum was purified using two steps: concentration by sucrose and gel filtration by using Sephacryl S-200. The results showed an increase in the final purification folds by 2.4 times with an enzyme yield of 32.6%. The immobilization studies showed that PPO was more stable when immobilized on chitosan by covalent linkage with immobilization ratio of 62%, in comparison with agar-agar by entrapment method (36%). The removal efficiency of crude and partial purified PPO was studied with textile dyes, including yellow, red, black and blue dyes at optimum conditions: pH 5, temperature 40oC after 3 hrs. Maximum removal efficiency of dyes observed with crude PPO were 53.9, 81.4, 86.5 and 79.6% respectively. However, purified PPO displayed removal efficiency reached 60.3, 84.3, 84.6 and 77.5% respectively. The potential of immobilized PPO on chitosan was evaluated by decolorization of black textile dye in packed bed bioreactor in batch operation. The results indicated that immobilized PPO in batch operation has the ability to remove 99% of the dye after 2 hrs, and the results showed a positive relationship between the degradation rate and incubation time in batch operation.

2021 ◽  
Author(s):  
Swati Sambita Mohanty ◽  
Arvind Kumar

Abstract The current study describes the aerobic biodegradation of Indanthrene Blue RS dye by a microbial consortium immobilized on corn-cob biochar in a continuous up-flow packed bed bioreactor. The adsorption experiments were performed without microbes to monitor the adsorption effects on initial dye decolorization efficiency. The batch experiments were carried out to estimate the process parameters, and the optimal values of pH, temperature, and inoculum volume were identified to be 10.0, 30 ºC, and 3.0 × 106 CFU mL-1, respectively. During the continuous operation, the effect of flow rate, initial substrate concentration, inlet loading rate of Indanthrene Blue RS on the elimination capacity, and its removal efficiency in the bioreactor was studied. The continuous up-flow packed bed bioreactor was performed at different flow rates (0.25 to 1.25 L h-1) under the optimal parameters. The maximum removal efficiency of 90% was observed, with the loading rate varying between 100 to 300 mg L-1 d-1. The up-flow packed bed bioreactor used for this study was extremely useful in eliminating Indanthrene Blue RS dye using both the biosorption and biodegradation process. Therefore, it is a potential treatment strategy for detoxifying textile wastewater containing anthraquinone based dyes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swati Sambita Mohanty ◽  
Arvind Kumar

AbstractThe current study describes the aerobic biodegradation of Indanthrene Blue RS dye by a microbial consortium immobilized on corn-cob biochar in a continuous up-flow packed bed bioreactor. The adsorption experiments were performed without microbes to monitor the adsorption effects on initial dye decolorization efficiency. The batch experiments were carried out to estimate the process parameters, and the optimal values of pH, temperature, and inoculum volume were identified as 10.0, 30 °C, and 3.0 × 106 CFU mL−1, respectively. During the continuous operation, the effect of flow rate, initial substrate concentration, inlet loading rate of Indanthrene Blue RS on the elimination capacity, and its removal efficiency in the bioreactor was studied. The continuous up-flow packed bed bioreactor was performed at different flow rates (0.25 to 1.25 L h−1) under the optimal parameters. The maximum removal efficiency of 90% was observed, with the loading rate varying between 100 and 300 mg L−1 day−1. The up-flow packed bed bioreactor used for this study was extremely useful in eliminating Indanthrene Blue RS dye using both the biosorption and biodegradation process. Therefore, it is a potential treatment strategy for detoxifying textile wastewater containing anthraquinone-based dyes.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 743
Author(s):  
Marcela Levio-Raiman ◽  
Gabriela Briceño ◽  
Bárbara Leiva ◽  
Sebastián López ◽  
Heidi Schalchli ◽  
...  

This study provides the basis for implementing a continuous treatment system for wastewater containing a pesticide mixture formed by atrazine, iprodione, and chlorpyrifos. Two fungal strains (Verticilium sp. H5 and Metacordyceps sp. H12) isolated from a biomixture of a biopurification system were able to remove different pesticide concentrations (10 to 50 mg L−1) efficiently from the liquid medium; however, the half-life of the pesticides was reduced and characterized by a T1/2 of 5.4 to 9.2 d for atrazine, 3.7 to 5.8 d for iprodione, and 2.6 to 2.9 d for chlorpyrifos using the fungal consortium. The immobilization of the fungal consortium in alginate bead was effective, with the highest pesticide removal observed using an inoculum concentration of 30% wv−1. The packed-bed reactor with the immobilized fungal consortium, which was operated in the continuous mode at different flow rates (30, 60, and 90 mL h−1), required approximately 10 d to achieve removal efficiency (atrazine: 59%; iprodione: 96%; chlorpyrifos: ~85%). The bioreactor was sensitive to flow rate fluctuations but was able to recover performance quickly. The pesticide metabolites hydroxyatrazine, 3,5-dichloroaniline, and 3,5,6-trichloro-2-pyridinol were produced, and a slight accumulation of 3,5,6-trichloro-2-pyridinol was observed. Nevertheless, reactor removal efficiency was maintained until the study ended (60 d).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elahe Azizi ◽  
Fariba Abbasi ◽  
Mohammad Ali Baghapour ◽  
Mohammad Reza Shirdareh ◽  
Mohammad Reza Shooshtarian

Abstract4-chlorophenol (4-CP) is a hazardous contaminant that is hardly removed by some technologies. This study investigated the biodegradation, and physical 4-CP removal by a mixed microbial consortium in the Airlift packed bed bioreactor (ALPBB) and modeling by an artificial neural network (ANN) for first the time. The removal efficiency of ALPBB was investigated at 4-CP(1-1000 mg/L) and hydraulic retention time (HRT)(6-96 hr) by HPLC. The results showed that removal efficiency decreased from 85 at 1 to 0.03% at 1000 mg/L, with increasing 4-CP concentration and HRT decreasing. BOD5/COD increased with increasing exposure time and concentration decreasing, from 0.05 at 1000 to 0.96 at 1 mg/L. With time increasing, the correlation between COD and 4-CP removal increased (R2 = 0.5, HRT = 96 h). There was a positive correlation between the removal of 4-CP and SCOD by curve fitting was R2 = 0.93 and 0.96, respectively. Moreover, the kinetics of 4-CP removal follows the first-order and pseudo-first-order equation at 1 mg/L and other concentrations, respectively. 4-CP removal modeling has shown that the 2:3:1 and 2:4:1 were the best structures (MSE: physical = 0.126 and biological = 0.9)(R2allphysical = 0.999 and R2testphysical = 0.999) and (R2allbiological = 0.71, and R2testbiological = 0.997) for 4-CP removal. Also, the output obtained by the ANN prediction of 4-CP was correlated to the actual data (R2physical = 0.9997 and R2biological = 0.59). Based on the results, ALPBB with up-flow submerged aeration is a suitable option for the lower concentration of 4-CP, but it had less efficiency at high concentrations. So, physical removal of 4-CP was predominant in biological treatment. Therefore, the modification of this reactor for 4-CP removal is suggested at high concentrations.


2021 ◽  
Vol 52 (6) ◽  
pp. 1365-1374
Author(s):  
G. M. Aziz ◽  
S. I. Hussein ◽  
S. D. Abbass ◽  
A. L. Ibrahim ◽  
D. K. Abbas

 The present study was aimed to exploit the free and immobilized peroxidase from Nigella sativa seeds to degradation of textile dyes polluting the environment and water. The optimum conditions for extracting the enzyme from the Nigella seeds were determined and the highest specific activity of the enzyme was obtained 1750 units / mg protein when extracting the enzyme from the ground seeds at a ratio of 1:20 (w: v) with sodium acetate buffer at 0.2 M and pH 5.0 for 15 minutes. The enzyme was purified using two steps including the concentration by sucrose and gel filtration by using Sephadex G-150. The results shown an increase in final purification folds 2.8 time with an enzyme yield of 35%. The immobilization of peroxidase were done by entrapment method using Ca- alginate and the immobilization ratio was reached to 49%. The removal efficiency of dyes by crude enzyme (free, immobilized) and partial purified peroxidase were studied with textile dyes such as yellow, red, black and blue dyes at optimum conditions pH 5, temperature 37oC after 3 hr. Maximum removal efficiency of dyes observed with crude peroxidase and reached (76.9, 88.7, 91 and 88) % respectively. These results were close to the efficiency of the purified enzyme in removing the four dyes, while the efficiency of the crude immobilized enzyme in removing the dyes was about (70, 81, 72 and 56.4)%, respectively.


2019 ◽  
Vol 13 (4) ◽  
pp. 268-276
Author(s):  
Sridevi Ayla ◽  
Monika Kallubai ◽  
Suvarnalatha Devi Pallipati ◽  
Golla Narasimha

Background:Laccase, a multicopper oxidoreductase (EC: 1.10.3.2), is a widely used enzyme in bioremediation of textile dye effluents. Fungal Laccase is preferably used as a remediating agent in the treatment and transformation of toxic organic pollutants. In this study, crude laccase from a basidiomycetes fungus, Phanerochaete sordida, was able to decolorize azo, antroquinone and indigoid dyes. In addition, interactions between dyes and enzyme were analysed using molecular docking studies.Methods:In this work, a white rot basidiomycete’s fungus, Phanerochaete sordida, was selected from forest soil isolates of Eastern Ghats, and Tirumala and lignolytic enzymes production was assayed after 7 days of incubation. The crude enzyme was checked for decolourisation of various synthetic textile dyes (Vat Brown, Acid Blue, Indigo, Reactive Blue and Reactive Black). Molecular docking studies were done using Autodock-4.2 to understand the interactions between dyes and enzymes.Results:Highest decolourisation efficiency was achieved with the crude enzyme in case of vat brown whereas the lowest decolourisation efficiency was achieved in Reactive blue decolourisation. Similar results were observed in their binding affinity with lignin peroxidase of Phanerochaete chrysosporium through molecular docking approach.Conclusion:Thus, experimental results and subsequent in silico validation involving an advanced remediation approach would be useful to reduce time and cost in other similar experiments.


Author(s):  
Sasan Zarei ◽  
Seyyed Mohammad Mousavi ◽  
Teimour Amani ◽  
Mehrdad Khamforoush ◽  
Arezou Jafari

2010 ◽  
Vol 61 (1) ◽  
pp. 199-205 ◽  
Author(s):  
T. R. Chaparro ◽  
C. M. Botta ◽  
E. C. Pires

Effluents originated in cellulose pulp manufacturing processes are usually toxic and recalcitrant, specially the bleaching effluents, which exhibit high contents of aromatic compounds (e.g. residual lignin derivates). Although biological processes are normally used, their efficiency for the removal of toxic lignin derivates is low. The toxicity and recalcitrance of a bleached Kraft pulp mill were assessed through bioassays and ultraviolet absorption measurements, i.e. acid soluble lignin (ASL), UV280, and specific ultraviolet absorption (SUVA), before and after treatment by an integrated system comprised of an anaerobic packed-bed bioreactor and oxidation step with ozone. Furthermore, adsorbable organic halides (AOX) were measured. The results demonstrated not only that the toxic recalcitrant compounds can be removed successfully using integrated system, but also the ultraviolet absorption measurements can be an interesting control-parameter in a wastewater treatment.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gulnur Arabaci ◽  
Ayse Usluoglu

Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100 mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents.


2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


Sign in / Sign up

Export Citation Format

Share Document