scholarly journals Modelling of vertical nano-needles as sensing devices for neuronal signal recordings

Author(s):  
Federico Leva ◽  
Pierpaolo Palestri ◽  
Luca Selmi

A design-oriented numerical study of vertical Si-nanowires to be used as sensing elements for the detection of the intracellular electrical activity of neurons. An equivalent lumped-element circuit model is derived and validated by comparison with physics-based numerical simulations. Most of the component values can be identified individually by geometrical and physical considerations. The transfer function and the SNR of the sensor in presence of thermal noise are derived, and the impact of the device geometry is shown.

2020 ◽  
Author(s):  
Federico Leva ◽  
Pierpaolo Palestri ◽  
Luca Selmi

A design-oriented numerical study of vertical Si-nanowires to be used as sensing elements for the detection of the intracellular electrical activity of neurons. An equivalent lumped-element circuit model is derived and validated by comparison with physics-based numerical simulations. Most of the component values can be identified individually by geometrical and physical considerations. The transfer function and the SNR of the sensor in presence of thermal noise are derived, and the impact of the device geometry is shown.


2020 ◽  
Author(s):  
Federico Leva ◽  
Pierpaolo Palestri ◽  
Luca Selmi

A design-oriented numerical study of vertical Si-nanowires to be used as sensing elements for the detection of the intracellular electrical activity of neurons. An equivalent lumped-element circuit model is derived and validated by comparison with physics-based numerical simulations. Most of the component values can be identified individually by geometrical and physical considerations. The transfer function and the SNR of the sensor in presence of thermal noise are derived, and the impact of the device geometry is shown.


2014 ◽  
Vol 7 (5) ◽  
pp. 2065-2076 ◽  
Author(s):  
P.-A Arrial ◽  
N. Flyer ◽  
G. B. Wright ◽  
L. H. Kellogg

Abstract. Fully 3-D numerical simulations of thermal convection in a spherical shell have become a standard for studying the dynamics of pattern formation and its stability under perturbations to various parameter values. The question arises as to how the discretization of the governing equations affects the outcome and thus any physical interpretation. This work demonstrates the impact of numerical discretization on the observed patterns, the value at which symmetry is broken, and how stability and stationary behavior is dependent upon it. Motivated by numerical simulations of convection in the Earth's mantle, we consider isoviscous Rayleigh–Bénard convection at infinite Prandtl number, where the aspect ratio between the inner and outer shell is 0.55. We show that the subtleties involved in developing mantle convection models are considerably more delicate than has been previously appreciated, due to the rich dynamical behavior of the system. Two codes with different numerical discretization schemes – an established, community-developed, and benchmarked finite-element code (CitcomS) and a novel spectral method that combines Chebyshev polynomials with radial basis functions (RBFs) – are compared. A full numerical study is investigated for the following three cases. The first case is based on the cubic (or octahedral) initial condition (spherical harmonics of degree ℓ = 4). How this pattern varies to perturbations in the initial condition and Rayleigh number is studied. The second case investigates the stability of the dodecahedral (or icosahedral) initial condition (spherical harmonics of degree ℓ = 6). Although both methods first converge to the same pattern, this structure is ultimately unstable and systematically degenerates to cubic or tetrahedral symmetries, depending on the code used. Lastly, a new steady-state pattern is presented as a combination of third- and fourth-order spherical harmonics leading to a five-cell or hexahedral pattern and stable up to 70 times the critical Rayleigh number. This pattern can provide the basis for a new accuracy benchmark for 3-D spherical mantle convection codes.


2019 ◽  
Vol 7 (12) ◽  
pp. 439 ◽  
Author(s):  
Ming Song ◽  
Wei Shi ◽  
Zhengru Ren ◽  
Li Zhou

In this paper, the interaction between level ice and wind turbine tower is simulated by the explicit nonlinear code LS-DYNA. The isotropic elasto-plastic material model is used for the level ice, in which ice crushing failure is considered. The effects of ice mesh size and ice failure strain on ice forces are investigated. The results indicate that these parameters have a significant effect on the ice crushing loads. To validate and benchmark the numerical simulations, experimental data on level ice-wind turbine tower interactions are used. First, the failure strains of the ice models with different mesh sizes are calibrated using the measured maximum ice force from one test. Next, the calibrated ice models with different mesh sizes are applied for other tests, and the simulated results are compared to corresponding model test data. The effects of the impact speed and the size of wind turbine tower on the comparison between the simulated and measured results are studied. The comparison results show that the numerical simulations can capture the trend of the ice loads with the impact speed and the size of wind turbine tower. When a mesh size of ice model is 1.5 times the ice thickness, the simulations can give more accurate estimations in terms of maximum ice loads for all tests, i.e., good agreement between the simulated and measured results is achieved.


2014 ◽  
Vol 7 (2) ◽  
pp. 2033-2064
Author(s):  
P.-A. Arrial ◽  
N. Flyer ◽  
G. B. Wright ◽  
L. H. Kellogg

Abstract. Fully 3-D numerical simulations of thermal convection in a spherical shell have become a standard for studying the dynamics of pattern formation and its stability under perturbations to various parameter values. The question arises as to how does the discretization of the governing equations affect the outcome and thus any physical interpretation. This work demonstrates the impact of numerical discretization on the observed patterns, the value at which symmetry is broken, and how stability and stationary behavior is dependent upon it. Motivated by numerical simulations of convection in the Earth's mantle, we consider isoviscous Rayleigh-Bénard convection at infinite Prandtl number, where the aspect ratio between the inner and outer shell is 0.55. We show that the subtleties involved in development mantle convection models are considerably more delicate than has been previously appreciated, due to the rich dynamical behavior of the system. Two codes with different numerical discretization schemes: an established, community-developed, and benchmarked finite element code (CitcomS) and a novel spectral method that combines Chebyshev polynomials with radial basis functions (RBF) are compared. A full numerical study is investigated for the following three cases. The first case is based on the cubic (or octahedral) initial condition (spherical harmonics of degree ℓ =4). How variations in the behavior of the cubic pattern to perturbations in the initial condition and Rayleigh number between the two numerical discrezations is studied. The second case investigates the stability of the dodecahedral (or icosahedral) initial condition (spherical harmonics of degree ℓ = 6). Although both methods converge first to the same pattern, this structure is ultimately unstable and systematically degenerates to cubic or tetrahedral symmetries, depending on the code used. Lastly, a new steady state pattern is presented as a combination of order 3 and 4 spherical harmonics leading to a five cell or a hexahedral pattern and stable up to 70 times the critical Rayleigh number. This pattern can provide the basis for a new accuracy benchmark for 3-D spherical mantle convection codes.


Author(s):  
Jong-Jin Jung ◽  
Hyun-Ho Lee ◽  
Tae-Hyun Park ◽  
Young-Woo Lee

The hydro-elasticity effect of sloshing loads in LNG cargo tank has been studied through experiments and numerical simulations regarding the fluid-structure interaction between sloshing impact pressures and tank structures. Sloshing model tests with 1/50 scale membrane type tanks were carried out for 1-D regular harmonic motion to investigate variations of impact pressures due to elasticity differences of the tank structure. Numerical simulations were performed and validated for the same case. Additionally, wall impinging jet flow was simulated by numerical simulation to verify the relation between elasticity of structure and impact pressure. It was commonly observed that the elasticity of the tank structure had significant influence on the height and shape of the impact pressure peak. Numerical study showed that the ratio between the structural natural period and the duration of the impact pressure is important for the influence of impact pressure on the tank structure.


2018 ◽  
Vol 55 (4) ◽  
pp. 652-657 ◽  
Author(s):  
Gabriel Murariu ◽  
Razvan Adrian Mahu ◽  
Adrian Gabriel Murariu ◽  
Mihai Daniel Dragu ◽  
Lucian P. Georgescu ◽  
...  

This article presents the design of a specific unmanned aerial vehicle UAV prototype own building. Our UAV is a flying wing type and is able to take off with a little boost. This system happily combines some major advantages taken from planes namely the ability to fly horizontal, at a constant altitude and of course, the great advantage of a long flight-time. The aerodynamic models presented in this paper are optimized to improve the operational performance of this aerial vehicle, especially in terms of stability and the possibility of a long gliding flight-time. Both aspects are very important for the increasing of the goals� efficiency and for the getting work jobs. The presented simulations were obtained using ANSYS 13 installed on our university� cluster system. In a next step the numerical results will be compared with those during experimental flights. This paper presents the main results obtained from numerical simulations and the obtained magnitudes of the main flight coefficients.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 31
Author(s):  
Jeremy Arancio ◽  
Ahmed Ould El Moctar ◽  
Minh Nguyen Tuan ◽  
Faradj Tayat ◽  
Jean-Philippe Roques

In the race for energy production, supplier companies are concerned by the thermal rating of offshore cables installed in a J-tube, not covered by IEC 60287 standards, and are now looking for solutions to optimize this type of system. This paper presents a numerical model capable of calculating temperature fields of a power transmission cable installed in a J-tube, based on the lumped element method. This model is validated against the existing literature. A sensitivity analysis performed using Sobol indices is then presented in order to understand the impact of the different parameters involved in the heating of the cable. This analysis provides an understanding of the thermal phenomena in the J-tube and paves the way for potential technical and economic solutions to increase the ampacity of offshore cables installed in a J-tube.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


2021 ◽  
Vol 54 (7) ◽  
pp. 1-35
Author(s):  
Salonik Resch ◽  
Ulya R. Karpuzcu

Benchmarking is how the performance of a computing system is determined. Surprisingly, even for classical computers this is not a straightforward process. One must choose the appropriate benchmark and metrics to extract meaningful results. Different benchmarks test the system in different ways, and each individual metric may or may not be of interest. Choosing the appropriate approach is tricky. The situation is even more open ended for quantum computers, where there is a wider range of hardware, fewer established guidelines, and additional complicating factors. Notably, quantum noise significantly impacts performance and is difficult to model accurately. Here, we discuss benchmarking of quantum computers from a computer architecture perspective and provide numerical simulations highlighting challenges that suggest caution.


Sign in / Sign up

Export Citation Format

Share Document