scholarly journals Fundamental Limitations and State-of-the-art Solutions for Target Node Localization in WSNs

Author(s):  
Lismer Andres Caceres Najarro ◽  
Iickho Song ◽  
Kiseon Kim

<p> </p><p>With the advances in new technological trends and the reduction in prices of sensor nodes, wireless sensor networks</p> <p>(WSNs) and their applications are proliferating in several areas of our society such as healthcare, industry, farming, and housing. Accordingly, in recent years attention on localization has increased significantly since it is one of the main facets in any WSN. In a nutshell, localization is the process in which the position of any sensor node is retrieved by exploiting measurements from and between sensor nodes. Several techniques of localization have been proposed in the literature with different localization accuracy, complexity, and hence different applicability. The localization accuracy is limited by fundamental limitations, theoretical and practical, that restrict the localization accuracy regardless of the technique employed in the localization process. In this paper, we pay special attention to such fundamental limitations from the theoretical and practical points of view and provide a comprehensive review of the state-of-the-art solutions that deal with such limitations. Additionally, discussion on the theoretical and practical limitations together with their recent solutions, remaining challenges, and perspectives are presented.</p> <p><br></p>

2021 ◽  
Author(s):  
Lismer Andres Caceres Najarro ◽  
Iickho Song ◽  
Kiseon Kim

<p> </p><p>With the advances in new technological trends and the reduction in prices of sensor nodes, wireless sensor networks</p> <p>(WSNs) and their applications are proliferating in several areas of our society such as healthcare, industry, farming, and housing. Accordingly, in recent years attention on localization has increased significantly since it is one of the main facets in any WSN. In a nutshell, localization is the process in which the position of any sensor node is retrieved by exploiting measurements from and between sensor nodes. Several techniques of localization have been proposed in the literature with different localization accuracy, complexity, and hence different applicability. The localization accuracy is limited by fundamental limitations, theoretical and practical, that restrict the localization accuracy regardless of the technique employed in the localization process. In this paper, we pay special attention to such fundamental limitations from the theoretical and practical points of view and provide a comprehensive review of the state-of-the-art solutions that deal with such limitations. Additionally, discussion on the theoretical and practical limitations together with their recent solutions, remaining challenges, and perspectives are presented.</p> <p><br></p>


Author(s):  
Alonshia S. Elayaraja

Many applications in wireless sensor networks perform localization of nodes over an extended period of time. Optimal selection algorithm poses new challenges to the overall transmission power levels for target detection, and thus, localized energy optimized sensor management strategies are necessary for improving the accuracy of target tracking. In this chapter, a proposal plan to develop a Bayesian localized energy optimized sensor distribution scheme for efficient target tracking in wireless sensor network is designed. The sensor node localization is done with Bayesian average, which estimates the sensor node's energy optimality. Then the sensor nodes are localized and distributed based on the Bayesian energy estimate for efficient target tracking. The sensor node distributional strategy improves the accuracy of identifying the targets to be tracked quickly. The performance is evaluated with parameters such as accuracy of target tracking, energy consumption rate, localized node density, and time for target tracking.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 343 ◽  
Author(s):  
Dezhi Han ◽  
Yunping Yu ◽  
Kuan-Ching Li ◽  
Rodrigo Fernandes de Mello

The Distance Vector-Hop (DV-Hop) algorithm is the most well-known range-free localization algorithm based on the distance vector routing protocol in wireless sensor networks; however, it is widely known that its localization accuracy is limited. In this paper, DEIDV-Hop is proposed, an enhanced wireless sensor node localization algorithm based on the differential evolution (DE) and improved DV-Hop algorithms, which improves the problem of potential error about average distance per hop. Introduced into the random individuals of mutation operation that increase the diversity of the population, random mutation is infused to enhance the search stagnation and premature convergence of the DE algorithm. On the basis of the generated individual, the social learning part of the Particle Swarm (PSO) algorithm is embedded into the crossover operation that accelerates the convergence speed as well as improves the optimization result of the algorithm. The improved DE algorithm is applied to obtain the global optimal solution corresponding to the estimated location of the unknown node. Among the four different network environments, the simulation results show that the proposed algorithm has smaller localization errors and more excellent stability than previous ones. Still, it is promising for application scenarios with higher localization accuracy and stability requirements.


Author(s):  
Tsenka Stoyanova ◽  
Fotis Kerasiotis ◽  
George Papadopoulos

In this chapter the authors discuss the feasibility of sensor node localization by exploiting the inherent resources of WSN technology, such as the received signal strength (RSS) of the exchanged messages. The authors also present a brief overview of various factors influencing the RSS, including the RF-signal propagation and other topology parameters which influence the localization process and accuracy. Moreover, the RSS variability due to internal factors, related to the hardware implementation of a sensor node, is investigated in order to be considered in simulations of RSS-based outdoor localization scenarios. Localization considerations referring to techniques, topology parameters and factors influencing the localization accuracy are combined in simulation examples to evaluate their significance concerning target positioning performance. Finally, the RF propagation model and the topology parameters being identified are validated in real outdoor localization scenario.


2014 ◽  
Vol 543-547 ◽  
pp. 3256-3259 ◽  
Author(s):  
Da Peng Man ◽  
Guo Dong Qin ◽  
Wu Yang ◽  
Wei Wang ◽  
Shi Chang Xuan

Node Localization technology is one of key technologies in wireless sensor network. DV-Hop localization algorithm is a kind of range-free algorithm. In this paper, an improved DV-Hop algorithm aiming to enhance localization accuracy is proposed. To enhance localization accuracy, average per-hop distance is replaced by corrected value of global average per-hop distance and global average per-hop error. When calculating hop distance, unknown nodes use corresponding average per-hop distance expression according to different hop value. Comparison with DV-Hop algorithm, simulation results show that the improved DV-Hop algorithm can reduce the localization error and enhance the accuracy of sensor nodes localization more effectively.


2014 ◽  
Vol 543-547 ◽  
pp. 989-992
Author(s):  
Xiao Qin Li ◽  
Guang Rong Chen

The node self-localization is the basis of target localization for wireless sensor network (WSN), the WSN nodes localization algorithms have two types based on distance and non distance. The node localization based on RSSI is simple and widely used in application. According to the traditional WSN nodes localization algorithm, the RSSI signal intensity changes greatly and with nonlinearity. And it is converted into distance feature with a large deviation, which leads to inaccurate positioning and localization. In order to solve this problem, a sensor node localization algorithm is proposed based on fuzzy RSSI distance. The nodes information is collected based on RSSI ranging method. And the location information is processed with fuzzy operation. The disturbance from the environmental factors for the positioning is solved. The accuracy of the node localization is improved. Simulation result shows that this algorithm can locate the sensor nodes accurately. The localization accuracy is high, and the performance of nodes localization is better than the traditional algorithm. It has good application value in the WSN nodes distribution and localization design.


2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


In wireless sensor networks, localization is a way to track the exact location of sensor nodes. Occasionally node localization may not be accurate due to the absence or limitation of anchor nodes. To reduce the mean localization error, soft computing techniques such as BAT and bacterial foraging driven bat algorithm (BDBA) are utilized in literature. For better localization with reduced error, in this paper, firefly driven bat algorithm (FDBA) is proposed, which combines the heuristic of firefly and BAT algorithms. Our proposed FDBA algorithm provides better localization in terms of error of 60% and 40 % less error as compared to BAT and BDBA algorithm, respectively.


2021 ◽  
pp. 242-249
Author(s):  
M.Shahkhir Mozamir ◽  
◽  
Rohani Binti Abu Bakar ◽  
Wan Isni Soffiah Wan Din ◽  
Zalili Binti Musa

Localization is one of the important matters for Wireless Sensor Networks (WSN) because various applications are depending on exact sensor nodes position. The problem in localization is the gained low accuracy in estimation process. Thus, this research is intended to increase the accuracy by overcome the problem in the Global best Local Neighborhood Particle Swarm Optimization (GbLN-PSO) to gain high accuracy. To compass this problem, an Improved Global best Local Neighborhood Particle Swarm Optimization (IGbLN-PSO) algorithm has been proposed. In IGbLN-PSO algorithm, there are consists of two phases: Exploration phase and Exploitation phase. The neighbor particles population that scattered around the main particles, help in the searching process to estimate the node location more accurately and gained lesser computational time. Simulation results demonstrated that the proposed algorithm have competence result compared to PSO, GbLN-PSO and TLBO algorithms in terms of localization accuracy at 0.02%, 0.01% and 59.16%. Computational time result shows the proposed algorithm less computational time at 80.07%, 17.73% and 0.3% compared others.


Sign in / Sign up

Export Citation Format

Share Document