scholarly journals Equivalent-Circuit Modeling of Lossless and Lossy Bi-Periodic Scatterers by an Eigenstate Approach

Author(s):  
Alberto Hernández-Escobar ◽  
Elena Abdo-Sánchez ◽  
Jaime Esteban ◽  
Teresa María Martín-Guerrero ◽  
Carlos Camacho-Peñalosa

The use of an eigenstate based equivalent circuit topology is proposed for the analysis and modeling of lossless and lossy bi-periodic scatterers. It can significantly simplify the design of this kind of surfaces, since it reduces the number of elements with respect to other general circuits. It contains at most only two admittances and two transformers depending on one unique transformation ratio. The real parts of these admittances can be assured to be non-negative, an interesting aspect in the modeling of lossy surfaces such as those present in asorbers. Moreover, due to the capability of decomposition into the eigenexcitations of the structure, the circuit provides important physical insight. Different cases of scatterers have been analyzed: symmetric and asymmetric, lossy and lossless. In all these cases, the modeling of the circuit admittances has been successfully achieved with a few RLC elements, positive and frequency independent. In the case of structures with symmetries, the transformation ratio directly reflects the physical orientation of the eigenexcitations of the scatterer. Furthermore, in the case of lossy scatterers but without symmetries, the resulting equivalent circuit reveals that their eigenexcitations are not linear polarizations, but elliptic polarizations whose properties are described by the complex transformation ratio.

2021 ◽  
Author(s):  
Alberto Hernández-Escobar ◽  
Elena Abdo-Sánchez ◽  
Jaime Esteban ◽  
Teresa María Martín-Guerrero ◽  
Carlos Camacho-Peñalosa

The use of an eigenstate based equivalent circuit topology is proposed for the analysis and modeling of lossless and lossy bi-periodic scatterers. It can significantly simplify the design of this kind of surfaces, since it reduces the number of elements with respect to other general circuits. It contains at most only two admittances and two transformers depending on one unique transformation ratio. The real parts of these admittances can be assured to be non-negative, an interesting aspect in the modeling of lossy surfaces such as those present in asorbers. Moreover, due to the capability of decomposition into the eigenexcitations of the structure, the circuit provides important physical insight. Different cases of scatterers have been analyzed: symmetric and asymmetric, lossy and lossless. In all these cases, the modeling of the circuit admittances has been successfully achieved with a few RLC elements, positive and frequency independent. In the case of structures with symmetries, the transformation ratio directly reflects the physical orientation of the eigenexcitations of the scatterer. Furthermore, in the case of lossy scatterers but without symmetries, the resulting equivalent circuit reveals that their eigenexcitations are not linear polarizations, but elliptic polarizations whose properties are described by the complex transformation ratio.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Saima Hasan ◽  
Abbas Z. Kouzani ◽  
M A Parvez Mahmud

This paper presents a simple and comprehensive model of a dual-gate graphene field effect transistor (FET). The quantum capacitance and surface potential dependence on the top-gate-to-source voltage were studied for monolayer and bilayer graphene channel by using equivalent circuit modeling. Additionally, the closed-form analytical equations for the drain current and drain-to-source voltage dependence on the drain current were investigated. The distribution of drain current with voltages in three regions (triode, unipolar saturation, and ambipolar) was plotted. The modeling results exhibited better output characteristics, transfer function, and transconductance behavior for GFET compared to FETs. The transconductance estimation as a function of gate voltage for different drain-to-source voltages depicted a proportional relationship; however, with the increase of gate voltage this value tended to decline. In the case of transit frequency response, a decrease in channel length resulted in an increase in transit frequency. The threshold voltage dependence on back-gate-source voltage for different dielectrics demonstrated an inverse relationship between the two. The analytical expressions and their implementation through graphical representation for a bilayer graphene channel will be extended to a multilayer channel in the future to improve the device performance.


Sign in / Sign up

Export Citation Format

Share Document