CLOUD BASED INTERNET OF THINGS FOR SMART CONNECTED OBJECTS

2019 ◽  
Vol 01 (02) ◽  
pp. 31-39 ◽  
Author(s):  
Duraipandian M. ◽  
Vinothkanna R.

The paper proposing the cloud based internet of things for the smart connected objects, concentrates on developing a smart home utilizing the internet of things, by providing the embedded labeling for all the tangible things at home and enabling them to be connected through the internet. The smart home proposed in the paper concentrates on the steps in reducing the electricity consumption of the appliances at the home by converting them into the smart connected objects using the cloud based internet of things and also concentrates on protecting the house from the theft and the robbery. The proposed smart home by turning the ordinary tangible objects into the smart connected objects shows considerable improvement in the energy consumption and the security provision.

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 283
Author(s):  
Fawad Ali Khan ◽  
Rafidah Md Noor ◽  
Miss Laiha Mat Kiah ◽  
Ismail Ahmedy ◽  
Mohd Yamani ◽  
...  

Internet of Things (IoT) facilitates a wide range of applications through sensor-based connected devices that require bandwidth and other network resources. Enhancement of efficient utilization of a heterogeneous IoT network is an open optimization problem that is mostly suffered by network flooding. Redundant, unwanted, and flooded queries are major causes of inefficient utilization of resources. Several query control mechanisms in the literature claimed to cater to the issues related to bandwidth, cost, and Quality of Service (QoS). This research article presented a statistical performance evaluation of different query control mechanisms that addressed minimization of energy consumption, energy cost and network flooding. Specifically, it evaluated the performance measure of Query Control Mechanism (QCM) for QoS-enabled layered-based clustering for reactive flooding in the Internet of Things. By statistical means, this study inferred the significant achievement of the QCM algorithm that outperformed the prevailing algorithms, i.e., Divide-and-Conquer (DnC), Service Level Agreements (SLA), and Hybrid Energy-aware Clustering Protocol for IoT (Hy-IoT) for identification and elimination of redundant flooding queries. The inferential analysis for performance evaluation of algorithms was measured in terms of three scenarios, i.e., energy consumption, delays and throughput with different intervals of traffic, malicious mote and malicious mote with realistic condition. It is evident from the results that the QCM algorithm outperforms the existing algorithms and the statistical probability value “P” < 0.05 indicates the performance of QCM is significant at the 95% confidence interval. Hence, it could be inferred from findings that the performance of the QCM algorithm was substantial as compared to that of other algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2783 ◽  
Author(s):  
Linh-An Phan ◽  
Taehong Kim

Smart home is one of the most promising applications of the Internet of Things. Although there have been studies about this technology in recent years, the adoption rate of smart homes is still low. One of the largest barriers is technological fragmentation within the smart home ecosystem. Currently, there are many protocols used in a connected home, increasing the confusion of consumers when choosing a product for their house. One possible solution for this fragmentation is to make a gateway to handle the diverse protocols as a central hub in the home. However, this solution brings about another issue for manufacturers: compatibility. Because of the various smart devices on the market, supporting all possible devices in one gateway is also an enormous challenge. In this paper, we propose a software architecture for a gateway in a smart home system to solve the compatibility problem. By creating a mechanism to dynamically download and update a device profile from a server, the gateway can easily handle new devices. Moreover, the proposed gateway also supports unified control over heterogeneous networks. We implemented a prototype to prove the feasibility of the proposed gateway architecture and evaluated its performance from the viewpoint of message execution time over heterogeneous networks, as well as the latency for device profile downloads and updates, and the overhead needed for handling unknown commands.


2020 ◽  
pp. 6-10
Author(s):  
Arulanantham D ◽  
Pradeepkumar G ◽  
Palanisamy C ◽  
Dineshkumar Ponnusamy

The Internet of Things (IoT) is an establishment with sensors, base station, gateway, and network servers. IoT is an efficient and intellectual system that minimizes human exertion as well as right to use to real devices. This method also has an autonomous control property by which any device can control without any human collaboration. IoT-based automation has become very reasonable and it has been applied in several sectors such as manufacturing, transport, health care, consumer electronics, etc. In WSN’s smaller energy consumption sensors are expected to run independently for long phases. So much ongoing researches on implementing routing protocols for IoTbased WSNs.Energy consciousness is an essential part of IoT based WSN design issue. Minimalizing Energy consumption is well-thought-out as one of the key principles in the Expansion of routing protocols for the Internet of things. In this paper, we propose a Location based Energy efficient path routing for Internet of things and its applications its sensor position and clustering based finding the shortest path and real time implementation of Arduino based wireless sensor network architecture with the ESP8266 module. Finally, analyze the principles of Location-based energy-efficient routing and performance of QoS parameters, and then implemented automatic gas leakage detection and managing system.


2020 ◽  
Vol 17 (9) ◽  
pp. 4207-4212
Author(s):  
Padala Neeraja ◽  
Durgesh Nandan

The internet of things is nothing but the interconnection of a number of systems or objects in which the internal circuit consists of a number of sensors and connectors. The main aim of the internet of things is to transfer information and to make an interaction between the systems. Through IoT, all the systems can be sensed and all the home appliances will be controlled remotely through a mobile device. It creates an integration of more and more networks in the future. The IoT is a very important emerging technology nowadays in which the main applications of IoT are smart grids, smart homes, etc. As the number of devices was increasing nowadays IoT plays a very significant role in present society. So, the challenges were increasing and there will be a machine to machine communication and also with the user. It reduces human efforts as it is machine-dependent. It acts according to the instructions given by the user.


Sign in / Sign up

Export Citation Format

Share Document