The sandblasting use prospects in the semiconductor diodes production

2021 ◽  
pp. 339-344
Author(s):  
V.V. Zhukov ◽  
S.A. Stepanov

The process of manufacturing semiconductor components for the production of microwave diodes is considered. Scientifically based recommendations are presented for the separation of relatively thick, up to 1.5 mm, stacked silicon-based semiconductor substrates by the so-called sandblasting method, based on masking and pneumatic jet cutting of the substrate with micro abrasive powder. It is described the masking method and the principals of setting of the operating parameters of the packaged substrate jet processing, which were tested with a positive result on a pilot industrial sandblasting plant currently used by a domestic enterprise.

Author(s):  
P.J. Killingworth ◽  
M. Warren

Ultimate resolution in the scanning electron microscope is determined not only by the diameter of the incident electron beam, but by interaction of that beam with the specimen material. Generally, while minimum beam diameter diminishes with increasing voltage, due to the reduced effect of aberration component and magnetic interference, the excited volume within the sample increases with electron energy. Thus, for any given material and imaging signal, there is an optimum volt age to achieve best resolution.In the case of organic materials, which are in general of low density and electric ally non-conducting; and may in addition be susceptible to radiation and heat damage, the selection of correct operating parameters is extremely critical and is achiev ed by interative adjustment.


Author(s):  
David C Joy

The electron source is the most important component of the Scanning electron microscope (SEM) since it is this which will determine the overall performance of the machine. The gun performance can be described in terms of quantities such as its brightness, its source size, its energy spread, and its stability and, depending on the chosen application, any of these factors may be the most significant one. The task of the electron gun in an SEM is, in fact, particularly difficult because of the very wide range of operational parameters that may be required e.g a variation in probe size of from a few angstroms to a few microns, and a probe current which may go from less than a pico-amp to more than a microamp. This wide range of operating parameters makes the choice of the optimum source for scanning microscopy a difficult decision.Historically, the first step up from the sealed glass tube ‘cathode ray generator’ was the simple, diode, tungsten thermionic emitter.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-101-Pr8-107
Author(s):  
F. J. Martí ◽  
A. Castro ◽  
J. Olivares ◽  
C. Gómez-Aleixandre ◽  
J. M. Albella
Keyword(s):  

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-861-Pr3-867 ◽  
Author(s):  
S. M. Zemskova ◽  
J. A. Haynes ◽  
K. M. Cooley

1996 ◽  
Vol 444 ◽  
Author(s):  
Hyeon-Seag Kim ◽  
D. L. Polla ◽  
S. A. Campbell

AbstractThe electrical reliability properties of PZT (54/46) thin films have been measured for the purpose of integrating this material with silicon-based microelectromechanical systems. Ferroelectric thin films of PZT were prepared by metal organic decomposition. The charge trapping and degradation properties of these thin films were studied through device characteristics such as hysteresis loop, leakage current, fatigue, dielectric constant, capacitancevoltage, and loss factor measurements. Several unique experimental results have been found. Different degradation processes were verified through fatigue (bipolar stress), low and high charge injection (unipolar stress), and high field stressing (unipolar stress).


1996 ◽  
Vol 444 ◽  
Author(s):  
H. Okumoto ◽  
M. Shimomura ◽  
N. Minami ◽  
Y. Tanabe

AbstractSilicon-based polymers with σconjugated electrons have specific properties; photoreactivity for microlithography and photoconductivity for hole transport materials. To explore the possibility of combining these two properties to develop photoresists with electronic transport capability, photoconductivity of polysilanes is investigated in connection with their photoinduced chemical modification. Increase in photocurrent is observed accompanying photoreaction of poly(dimethylsilane) vacuum deposited films. This increase is found to be greatly enhanced in oxygen atmosphere. Such changes of photocurrent can be explained by charge transfer to electron acceptors from Si dangling bonds postulated to be formed during photoreaction.


2005 ◽  
Vol 862 ◽  
Author(s):  
Scott J. Jones ◽  
Joachim Doehler ◽  
Tongyu Liu ◽  
David Tsu ◽  
Jeff Steele ◽  
...  

AbstractNew types of transparent conductive oxides with low indices of refraction have been developed for use in optical stacks for the amorphous silicon (a-Si) solar cell and other thin film applications. The alloys are ZnO based with Si and MgF added to reduce the index of the materials through the creation of SiO2 or MgF2, with n=1.3-1.4, or the addition of voids in the materials. Alloys with 12-14% Si or Mg have indices of refraction at λ=800nm between 1.6 and 1.7. These materials are presently being used in optical stacks to enhance light scattering by Al/multi-layer/ZnO back reflectors in a-Si based solar cells to increase light absorption in the semiconductor layers and increase open circuit currents and boost device efficiencies. In contrast to Ag/ZnO back reflectors which have long term stability issues due to electromigration of Ag, these Al based back reflectors should be stable and usable in manufactured PV products. In this manuscript, structural properties for the materials will be reported as well as the performance of solar cell devices made using these new types of materials.


2009 ◽  
Vol E92-C (5) ◽  
pp. 708-712
Author(s):  
Dong-Heon HA ◽  
Chi Ho HWANG ◽  
Yong Soo LEE ◽  
Hee Chul LEE

Sign in / Sign up

Export Citation Format

Share Document