electronic transport
Recently Published Documents


TOTAL DOCUMENTS

3550
(FIVE YEARS 488)

H-INDEX

108
(FIVE YEARS 8)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 255
Author(s):  
Ben Hu ◽  
Bing Ding ◽  
Chong Xu ◽  
Zengjie Fan ◽  
Derong Luo ◽  
...  

The shuttling effect of polysulfides is one of the major problems of lithium–sulfur (Li–S) batteries, which causes rapid capacity fading during cycling. Modification of the commercial separator with a functional interlayer is an effective strategy to address this issue. Herein, we modified the commercial Celgard separator of Li–S batteries with one-dimensional (1D) covalent triazine framework (CTF) and a carbon nanotube (CNT) composite as a functional interlayer. The intertwined CTF/CNT can provide a fast lithium ionic/electronic transport pathway and strong adsorption capability towards polysulfides. The Li–S batteries with the CTF/CNT/Celgard separator delivered a high initial capacity of 1314 mAh g−1 at 0.1 C and remained at 684 mAh g−1 after 400 cycles−1 at 1 C. Theoretical calculation and static-adsorption experiments indicated that the triazine ring in the CTF skeleton possessed strong adsorption capability towards polysulfides. The work described here demonstrates the potential for CTF-based permselective membranes as separators in Li–S batteries.


ACS Nano ◽  
2022 ◽  
Author(s):  
Bintian Zhang ◽  
Eathen Ryan ◽  
Xu Wang ◽  
Weisi Song ◽  
Stuart Lindsay

Author(s):  
Dong-Hun Chae ◽  
Mattias Kruskopf ◽  
Jan Kučera ◽  
Jaesung Park ◽  
Yefei Yin ◽  
...  

Abstract Interlaboratory comparisons of the quantized Hall resistance are essential to verify the international coherence of primary impedance standards. Here we report on the investigation of the stability of p-doped graphene-based quantized Hall resistance devices at direct and alternating currents at CMI, KRISS, and PTB. To improve the stability of the electronic transport properties of the polymer encapsulated device, it was shipped in an over-pressurized transport chamber. The agreement of the quantized resistance with RK/2 at direct current was on the order of 1 nΩ/Ω between 3.5 T and 7.5 T at a temperature of 4.2 K despite changes in the carrier density during the shipping of the devices. At alternating current, the quantized resistance was realized in a double-shielded graphene Hall device. Preliminary measurements with digital impedance bridges demonstrate the good reproducibility of the quantized resistance near the frequency of 1 kHz within 0.1 μΩ/Ω throughout the international delivery.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 199
Author(s):  
Kim Eklund ◽  
Antti J. Karttunen

Nitrogen-doped carbon nanotubes (N-CNTs) show promise in several applications related to catalysis and electrochemistry. In particular, N-CNTs with a single nitrogen dopant in the unit cell have been extensively studied computationally, but the structure-property correlations between the relative positions of several nitrogen dopants and the electronic transport properties of N-CNTs have not been systematically investigated with accurate hybrid density functional methods. We use hybrid density functional theory and semiclassical Boltzmann transport theory to systematically investigate the effect of different substitutional nitrogen doping configurations on the electrical conductivity of N-CNTs. Our results indicate significant variation in the electrical conductivity and the relative energies of the different dopant configurations. The findings can be utilized in the optimization of electrical transport properties of N-CNTs.


2022 ◽  
pp. 2100972
Author(s):  
Marta Perucchini ◽  
Damiano Marian ◽  
Enrique G. Marin ◽  
Teresa Cusati ◽  
Giuseppe Iannaccone ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
David Friday ◽  
Nicholas Jackson

Conjugated polyelectrolytes (CPEs) combine ionic, electronic, and optical functionality with the mechanical and thermodynamic properties of semiflexible, amphiphilic polyelectrolytes. Critical to CPE design is the coupling between macromolecular conformations, ionic interactions, and electronic transport, the combination of which spans electronic to mesoscopic length scales, rendering coherent theoretical analysis challenging. Here, we utilize a recently developed anisotropic CG model in combination with a phenomenological tight-binding Hamiltonian to explore the interplay of single-chain conformational and electronic structure in CPEs. Accessible single chain conformations are explored as a function of solvent conditions and chain stiffness, reproducing a rich landscape of rod-like, racquet, pearl necklace, and helical conformations observed in previous works. The electronic structure of each conformational archtype is further analyzed, incorporating through-bond coupling, through-space coupling, and electrostatic contributions to the Hamiltonian. Electrostatics is observed to influence electronic structure primarily by modifying the accessible conformational space, and only minimally by direct modulation of on-site energies. Electron transport in CPEs is most efficient in helical and racquet conformations, which is attributed to the flattening of dihedrals and through-space coupling within collapsed conformations. Relatedly, kink formation within racquets does not significantly deteriorate electronic conjugation within CPEs - an insight critical to understanding transport within locally ordered aggregates. These conclusions provide unprecedented computational insight into structure function relationships defining emerging classes of CPEs.


Author(s):  
V.V. Marchenkov ◽  
A.N. Domozhirova ◽  
S.V. Naumov ◽  
S.M. Podgornykh ◽  
E.B. Marchenkova ◽  
...  

Author(s):  
B. V. Politov ◽  
A. Yu. Suntsov

Complex oxides with the general formula Pr1−xYxBaCo2−yNiyO6−δ (x = 0, 0.1, y = 0, 0.2) were successfully synthesized via combustion of organo-metallic precursors.


2022 ◽  
pp. 100597
Author(s):  
David M. Smiadak ◽  
Romain Claes ◽  
Nicolas Perez ◽  
Mack Marshall ◽  
Wanyue Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document