Pipe stick problems of deep well drilling

2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure

2019 ◽  
Vol 11 (7) ◽  
pp. 168781401986296 ◽  
Author(s):  
Yong Chen ◽  
Chuan He ◽  
Xu Zhou ◽  
Hao Yu

Based on field data and the related theories, the effects of drill string length, rotation speed, trajectory, and drilling fluid density on the friction during horizontal well drilling are analyzed in Sichuan. With increasing the length of drill string in the horizontal section, the friction grows. The drill pipe rotates faster and the torque decreases. Large undulation of borehole deviation and the “W” shape of the horizontal section lead to excessive friction. A higher fluid density causes higher torque and drag. Moreover, a friction reduction tool is designed to reduce friction, decrease the wear between the casing and the drill pipe joint, and prevent the differential pressure sticking, which improves the rate of penetration, and the specially designed spiral diversion channels improve the efficiency of borehole cleaning. The field experimental results have shown that the accumulated operational time of the friction reduction tool is more than 130 h and its fatigue life reaches up to 3 × 105 cycles. A plan of improving the tool structure is proposed to reduce the mud balling after the experiment. Finally, the mathematical model of calculating the spacing of the friction reduction tools is established, which provides technical support for investigating the friction in horizontal well drilling.


SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1201-1212 ◽  
Author(s):  
Ben Li ◽  
Hui Li ◽  
Boyun Guo ◽  
Xiao Cai ◽  
Mas lwan Konggidinata

Summary Gas-hydrate cuttings are conveyed upward by the drilling fluid through the outer drillpipe/wellbore annulus during the gas-hydrate-well-drilling process. The temperature profile along the wellbore during the drilling process has not been thoroughly investigated because the gas-hydrate cuttings could affect the temperature of the drilling fluid along the wellbore. As the mixture of drilling fluid and gas hydrates flows from the bottom to the surface, the methane and other hydrocarbons present in the gas hydrates would change from liquid to gas phase and further cause well-control issues. Furthermore, the bottomhole pressure would decrease and could not provide sufficient balance to the formation pressure, which could significantly increase the risk of well blowout. A numerical solution is presented in this paper to predict the temperature profile of the gas-hydrate well during the drilling process. The main considerations were the following: Hydrate cuttings entrained in the bottom of the hole would affect the temperature of the fluid in the annulus space. The entrained hydrate cuttings could affect the fluid thermal properties in the drillstring and in the annulus. Because of the Joule-Thomson cooling effect at the outlet of the nozzles, the fluid temperature at the bottom of the hole was lower than that above the drill-bit nozzles. Hence, the gas-hydrate-dissociation characteristics were considered and integrated in the proposed numerical model. The numerical model was validated by comparing the obtained data with the Shan et al. (2016) analytical model. In addition, the obtained data were also compared with the measured temperature data of a conventional well drilled in China and a gas-hydrate-well drilling record in India. Sensitivity analysis was used to evaluate the effects of the pumping rate, Joule-Thomson effect, and injection drilling-mud temperature on the annulus temperature-profile distribution. It was found that the injection drilling-mud temperature and pumping rate could affect the temperature profile in the annulus, whereas the Joule-Thomson effect could decrease the annulus temperature of the drilling mud near the bottom.


Author(s):  
Massara Salam ◽  
Nada S. Al-Zubaidi ◽  
Asawer A. Al-Wasiti

In the process of drilling directional, extended-reach, and horizontal wells, the frictional forces between the drill string and the wellbore or casing can cause severe problems including excessive torque which is one of the most important problems during drilling oil and gas well. Drilling fluid plays an important role by reducing these frictional forces. In this research, an enhancement of lubricating properties of drilling fluids was fundamentally examined by adding Lignite NPs into the water-based drilling fluid. Lubricity, Rheology and filtration properties of water-based drilling fluid were measured at room temperature using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. Lignite NPs were added at different concentrations (0.05 %, 0.1 %, 0.2 %, 0.5 %, and 1 %) by weight into water-based drilling fluid. Lignite NPs showed good reduction in COF of water-based drilling fluid. The enhancement was increased with increasing Lignite NPs concentrations; 23.68%, 35.52%, and 45.3 % reduction in COF were obtained by adding 0.2%, 0.5%, and 1% by weight Lignite NPs concentration, respectively.


2019 ◽  
Vol 9 (1) ◽  
pp. 3859-3862 ◽  
Author(s):  
R. Iqbal ◽  
M. Zubair ◽  
F. Pirzada ◽  
F. N. Abro ◽  
M. Ali ◽  
...  

Drilling mud density is an important factor in drilling operations. The cost of the drilling mud used for oil and gas well drilling can be 10%-15% of the total drilling cost, and the deeper the well, the more the needed drilling mud. This research aims to prepare a mud that provides performance similar to the conventional mud and to lower down the dependency of primitive CaCO3 technology by exploring it from trash/polluted and naturally occurring materials. For that purpose, a mud was prepared by replacing primeval CaCO3 with the CaCO3 derived from eggshells, as eggshells contain CaCO3 in high amounts which range from 70% to 95%. The success of this project will provide an affordable solution and an alternative way to explore new methodologies for obtaining CaCO3. According to the 2017 Report of Pakistan Poultry Association (PPA) 18,000 Million table eggs are consumed per year in Pakistan. The obtained results of this research are quite satisfactory. CaCO3 obtained from eggshells is used in high amounts, 275–410g to achieve density ranges from 9.5 to 11.0 pounds per gallon whereas, pure the needed quantity of pure CaCO3 is 150g to obtain the density of 10.5 pounds per gallon. Apart from this, it is also observed that eggshell based CaCO3 samples are more efficient in rheological properties compared to the market samples of CaCO3 t. The pH of pure CaCO3 sample of 10.5 pounds per gallon density is almost the same with the sample of eggshell CaCO3 of 10.5 pounds per gallon density.


2021 ◽  
Author(s):  
Ola Mohamed Balbaa ◽  
Hesham Mohamed ◽  
Sherif Mohamed Elkholy ◽  
Mohamed ElRashidy ◽  
Robert Munger ◽  
...  

Abstract While drilling highly depleted gas reservoirs with a very narrow drilling window, Common drilling methods like utilizing loss of circulation pills, wellbore strengthening materials and managed pressure drilling (MPD) are being used in several reservoirs, yet it cannot be successful or cost effective if applied in a traditional manner. Innovative approaches to enable drilling wells in highly depleted reservoir in the Mediterranean deep water were adopted. The approaches incorporated design changes to the well and Bottom hole assembly (BHA), optimized drilling practices, and unconventional use of MPD while drilling and cementing production liner. Well design change in comparison to offset wells to allow drilling the reservoir in one hole section. Several design changes were considered in the BHA and drilling fluids to prevent as well as mitigate losses and differential sticking risks. From the BHA viewpoint, one of the key successful prevention measures was maximizing the standoff to reduce the contact area with the formation, this was achieved through utilizing spiral heavy wall drill pipe (HWDP) instead of drill collars in addition to a modeled placement of stabilizers and roller reamers. While on the drilling fluid side, Calcium carbonate material was added to strengthen wellbore, prevent losses and avoid formation damage. Particle size up to 1000 micron and concentration up to 40ppb was used to strengthen the depleted sands dynamically while drilling. Furthermore, as mitigation to stuck pipe, Jar and accelerator placement was simulated to achieve optimum impulse and impact force while maintaining the Jar above potential sticking zone. Whereas to address the consequence of a stuck pipe event, disconnect subs were placed in BHA to allow for recovering the drill string efficiently. MPD was first introduced in the Mediterranean in 2007 and continued to develop this well-known technique to mitigate various drilling challenges. For this well, MPD was one of the key enabling factors to safely drill, run and cement the production liner. Surface back pressure MPD allowed using the lowest possible mud weight in the hole and maintaining downhole pressure constant in order to manage the narrow drilling window between the formation pressure and fracture pressure (less than 0.4 ppg). MPD was also applied for the first time for running and cementing the production liner to prevent losses and achieve good cement quality which is a key to successful well production.


Author(s):  
Nediljka Gaurina-Medjimurec ◽  
Borivoje Pasic

A stuck pipe is a common worldwide drilling problem in terms of time and financial cost. It causes significant increases in non-productive time and losses of millions of dollars each year in the petroleum industry. There are many factors affecting stuck pipe occurrence such as improper mud design, poor hole cleaning, differential pressure, key seating, balling up of bit, accumulation of cuttings, poor bottom hole assembly configuration, etc. The causes of a stuck pipe can be divided into two categories: (a) differential sticking and (b) mechanical sticking. Differential-pressure pipe sticking occurs when a portion of the drill string becomes embedded in a filter cake that forms on the wall of a permeable formation during drilling. Mechanical sticking is connected with key seating, formation-related wellbore instability, wellbore geometry (deviation and ledges), inadequate hole cleaning, junk in hole, collapsed casing, and cement related problems. Stuck pipe risk could be minimized by using available methodologies for stuck pipe prediction and avoiding based on available drilling parameters.


2013 ◽  
Vol 753-755 ◽  
pp. 130-133
Author(s):  
Hui Hong Luo ◽  
Ze Hua Wang ◽  
Yu Xue Sun ◽  
Han Jiang

Focus on the high temperature rheological stability and the fluid loss control of resistance to high temperature drilling fluid system, further determine system formula and the formula of the high temperature drilling fluid system should be optimized. Eventually, a kind of organo-silica drilling fluid system of excellent performance which is resistant to high temperature of 220 degrees has been developed, and the system performances have been evaluated. The high temperature-resistant organo-silica drilling fluid system is of good shale inhibition, lubricity and borehole stability. The fluid loss is low and the filter cake is thin and tight, which can effectively prevent bit balling. The sand-carrying ability is good and the rheological property is easy to control. The performances of drilling fluid remain stable under high salinity and the system can resist the pollution of 6%NaCl and 0.5%CaC12. The materials used in this system are non-toxic, non-fluorescent and suitable for deep well drilling.


2011 ◽  
Vol 201-203 ◽  
pp. 438-447 ◽  
Author(s):  
Yan Han ◽  
Xue Hui Zhao ◽  
Zhen Quan Bai ◽  
Bin Wei

Through researched on corrosion factors and development progress of sour gas field in China, the development situation of sour gas field in China was defined, the types of sour gas corrosion and impact factors of hydrogen sulfide stress cracking were illustrated. The results showed that, there are many corrosion mechanisms not clear when synergistic with different factors. The 105ksi grade drill-pipe was manufactured successfully, but it’s not enough for deep-well drilling. The standard API grade drill-pipe of low yield strength and hardness were mainly used in high sour gas field development. A series of tubing & casing were research and development, and applied in many overseas oil fields successfully.


2019 ◽  
Vol 2 (1) ◽  
pp. 178-185
Author(s):  
Attila Baksa ◽  
Gábor Ladányi ◽  
Sándor Szirbik ◽  
Zoltán Virág

Abstract Horizontal Directional Drilling (HDD) is a method of installing underground pipelines, cables and service conduit through trenchless methods. The tools and techniques used in the HDD process are an outgrowth of the oil well drilling industry, too. Installation of a pipeline by HDD is a three stages process. The first stage consists of directionally drilling a small diameter pilot hole along a designed directional path. Drilling fluid is pumped through the drill pipe to the drill bit where high pressure jets and the bit will grind the soils ahead of the drill stem. The second stage involves enlarging this pilot hole to a diameter suitable for installation of the pipeline. A reamer is pulled back and rotated while pumping drilling fluid to cut and remove solids to enlarge the hole. A kind of reamer is the subject of this paper. The final stage consists of pulling the pipeline back into the pre-reamed hole. The most important part of the mechanical analysis is to define the boundary conditions for operating situations when the tool is under maximum load. In this paper we present a helpful description for giving boundary conditions to perform the numerical simulation of a barrel reamer.


Sign in / Sign up

Export Citation Format

Share Document