scholarly journals Shear Wall Design within the Light of Prominent Standards

2020 ◽  
Vol 1 (4) ◽  
pp. 13-19
Author(s):  
Mahyar Maali

Reinforced concrete (RC) structures have their own weight, earthquake, wind, dead loads, live loads, creep, etc. throughout their service life. They are exposed to internal and external load effects. In order to meet the horizontal forces such as earthquake and wind from these loads affecting the structure, shear wall structures with high lateral rigidity are needed. Therefore, shear walls are one of the most important structural elements that can resist earthquake forces due to their high lateral rigidity and load bearing capacities. Most of the buildings today are designed according to the old regulations. Therefore, the shear wall was sized and reinforced according to these old regulations. However, to date, standards have been renewed in certain periods. Despite this, shear walls designed according to the old regulations continue to resist seismic forces. In this study, the design and behavioral differences of the reinforced concrete shear walls between the Turkish Regulation that came into force in 2019, and the old regulation were compared. In addition, RC shear walls were evaluated according to ACI-318-19 and EuroCode-2 regulations.

2021 ◽  
Author(s):  
MUHAMMET KARATON ◽  
Ömer Faruk Osmanlı ◽  
Mehmet Eren GÜLŞAN

Abstract Reinforced concrete shear walls are the structural elements that considerably increase the seismic performance of buildings. Fiber elements and fiber-spring elements are used for the modeling of the inelastic behavior of these elements. The Fiber Element Method provides a certain amount of accuracy for the modeling of reinforced concrete shear walls. However, the studies related to this method are still in progress. In this study, the efficiency of the force-based Fiber Element Method is investigated for different damping ratios and different damping types that used in the structural damping for reinforced concrete shear wall structures. Two shear wall structures that subjected to seismic loads are used for the comparison of numerical analysis and experimental results. The comparisons are achieved according to the absolute maximum values of the overturning moment, the base shear force, and the roof displacement. Rayleigh damping and stiffness-proportional damping types for the damping ratios that vary between 2-3% provide better results than mass-proportional damping. Additionally, the optimum number of fiber element for Rayleigh and stiffness-proportional damping types is determined for the optimum damping ratio that provides minimum differences between numerical analysis and experimental results. For these damping types, when the length of a fiber is smaller than 3% of the longitudinal length of the shear wall at the optimum damping ratios, the roof displacement differences between numerical analysis and experimental results are less than 2.5%.


Author(s):  
Kesava Rao B, Et. al.

In recent years, the construction of skyscrapers has been on the rise to overcome the shortage of land. These buildings are subject to an external lateral force, such as an earthquake and wind pressure. Pushover analysis (POA) has been broadly used in predicting the earthquake response of structures, and shear walls have been shown to be lateral drag elements. Therefore, in the present work, the effect of placing a shear wall on the periphery symmetrically, the periphery asymmetrically and in the center of the building is performed using the ETABS software. Using the response spectrum methodand thetime history method, a dynamic analysis is performed. Responses such as floor shear, floor displacement, and lateral floor shifts due to seismic forces are evaluated for various locations of the shear wall. According to the results and analysis, the shear wall on the symmetrical periphery of the structure is reducing the displacement and deviation of the floor compared to other cases.


Author(s):  
D. L. Hutchison ◽  
T. J. Van Geldermalsen

The recently published New Zealand Code of Practice for the Design of Concrete Structures (NZS 3101:1982) and the newly amended Code of Practice for General Structural Design and Design Loadings for Buildings (NZS 4203) permit a variety of possible design approaches for reinforced concrete shear wall structures. A series of wall designs for dimensionally similar four-storey and eight-storey buildings has been carried out and a comparison of construction cost estimates obtained together with an assessment of the relative design effort required for the different design options.


Author(s):  
MIRZA AAMIR BAIG ◽  
Rizwan Rashid

Seismic force, predominantly being an inertia force depends on the mass of the structure. As the mass of the structure increases the seismic forces also increase causing the requirement of even heavier sections to counter that heavy forces. And these heavy sections further increase the mass of the structure leading to even heavier seismic forces. Structural designers are met with huge challenge to balance these contradictory physical phenomena to make the structure safe. The structure no more can afford to be rigid. This introduces the concept of ductility. The structures are made ductile, allowing it yield in order to dissipate the seismic forces. A framed structure can be easily made ductile by properly detailing of the reinforcement. But again, as the building height goes beyond a certain limit, these framed structure sections (columns) gets larger and larger to the extent that they are no more practically feasible in a structure. There comes the role of shear walls. Shear walls provide ample amount of stiffness to the building frame resisting loads through in plane bending. But they inherently make the structure stiffer. So, there must be a balance between the amount of shear walls and frame elements present in a structure for safe and economic design of high-rise structures. Here an attempt has been made to study the behavior of different structures of reinforced concrete with different heights with and without shear walls. Coupled shear walls have also been studied to understand the comparative merit or demerit of framed structures with shear wall structures. Studies have been carried out on sample model structures and analysis has been carried out by ETABS software. It has been ensured to consider sample models that represent the current practices in structural design to include different structural configurations. Models having varied structural configurations like framed, shear wall, coupled shear wall, central core shear wall, core in core etc. have been taken into consideration. The inherent asymmetry present in the structures have also been dealt. The results have been tabulated and plotted to study their comparative behavior and interaction with each other. The findings of the study have been summarized and discussed.


2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2017 ◽  
Vol 21 (9) ◽  
pp. 1327-1348
Author(s):  
Cong Chen ◽  
Renjie Xiao ◽  
Xilin Lu ◽  
Yun Chen

Structure with replaceable devices is a type of earthquake resilient structure developed to restore the structure immediately after strong earthquakes. Current researches focus on one type of the replaceable device located in the structural part that is most likely to be damaged; however, plastic deformation would not be limited in a specific part but expand to other parts. To concentrate possible damage in shear wall structures, combined form of replaceable devices was introduced in this article. Based on previous studies, combined form of replaceable coupling beam and replaceable wall foot was used in a coupled shear wall. Influences of the dimension and location of the replaceable devices to the strength and stiffness of the shear wall were investigated through numerical modeling, which was verified by experimental data. Performance comparison between the shear walls with one type and combined form of replaceable devices and the conventional coupled shear wall was performed. In general, the shear wall with combined form of replaceable devices is shown to be better energy dissipated, and proper dimensions and locations of the replaceable devices should be determined.


Author(s):  
T. Paulay

To enable a comparison between the shear strength of shear walls and that of reinforced concrete beams to be made, the behaviour of the latter is briefly reviewed. The findings of research projects, related to deep beams and the effects of repeated cyclic loading, are summarised. More detailed information on the shear strength of deep beams, tested at the University of Canterbury, is presented, Particular problems associated with four classes of typical shear walls of multi-storey structures are briefly highlighted. The current recommendation of the
 SEAOC code, as applied to shear walls, are critically examined and certain
anomalies, which may ensue from their interpretation, are illustrated. Areas of research, related to the full evaluation of reinforced concrete shear wall
 behaviour, are suggested. The paper concludes with a number of design recommendations which suggest themselves from this review.


Author(s):  
Ming L. Wang

Abstract During strong ground motions, members of reinforced concrete structures undergo cyclic deformations and experience permanent damage. Members may lose their initial stiffness as well as strength. Recently, Los Alamos National Laboratory has performed experiments on scale models of shear wall structures subjected to recorded earthquake signals. In general, the results indicated that the measured structural stiffness decreased with increased levels of excitation in the linear response region. Furthermore, a significant reduction in strength as well as in stiffness was also observed in the inelastic range. Since the in-structure floor response spectra, which are used to design and qualify safety equipment, have been based on calculated structural stiffness and frequencies, it is possible that certain safety equipment could experience greater seismic loads than specified for qualification due to stiffness reduction. In this research, a hysteresis model based on the concept of accumulated damage has been developed to account for this stiffness degradation both in the linear and inelastic ranges. Single and three degrees of freedom seismic Category I structures were analyzed and compared with equivalent linear stiffness degradation models in terms of maximum displacement responses, permanent displacement, and floor response spectra. The results indicate significant differences in responses between the hysteresis model and equivalent linear stiffness degradation models. The hysteresis model is recommended in the analysis of reinforced concrete shear-wall structures to obtain the in-structure floor response spectra for equipment qualification. Results of both cumulative and one shot tests are compared.


2021 ◽  
Vol 23 (2) ◽  
pp. 167-176
Author(s):  
Sekar Mentari ◽  
Rosi Nursani

Indonesia is one of the countries that is prone to earthquakes. In addition to the dead loads, superimposed dead loads, and live loads, the design of buildings in Indonesia must be concerned with earthquake loads. Installing shear walls in the building structure as the Special Moment Frame Dual System is one of a solution to withstand earthquake loads. However, the location of shear walls must be considered, especially in buildings with horizontal irregularities. This study aims to determine the optimum location of the shear walls in a 10-storey building that has U-configuration with dynamic earthquake loads. This research is a numerical simulation ran by modelling the structure with software. To know the effect of the shear wall’s location on a building, several variations of the shear wall configuration with different positions have been conducted. It can be seen the lateral displacement of each floor and the shear force are the response structure to withstand the dynamic earthquake loads. Shear walls that are located close to the center of mass of the building are the optimum variation because the position of the shear wall is the closest to the core area of the building, which is the rotational axis of the building.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940002 ◽  
Author(s):  
Yao Chen ◽  
Qian Zhang ◽  
Jian Feng ◽  
Zhe Zhang

This study presents shear resistance of precast reinforced concrete (RC) shear walls. A novel assembling method for upper and lower wall panels is proposed, whereas vertical steel bars are grouped into bundles and effectively connected in preformed holes. To evaluate the feasibility and shear resistance of such a connection method, three specimens of precast shear walls with different horizontal steel bars have been constructed and tested under monotonic loading while subjected to a constant vertical compression. The results show that cracks mainly appear under the line that connects the midpoint of tension side and the corner of the compression side. The weak section of these shear walls is at the top of the preformed holes, and through cracks do not appear at the bottom of walls. These innovative precast shear walls are reliable, and no rebar is pulled out or seriously slipped. The yield load of the shear wall is great, and the stage between yield and failure is satisfactory. The bearing capacity declines slowly after the peak value.


Sign in / Sign up

Export Citation Format

Share Document