Terrestrial vegetation monitoring at Cape Hatteras National Seashore: 2019 data summary

2022 ◽  
Author(s):  
Maxwell Boyle ◽  
Elizabeth Rico

The Southeast Coast Network (SECN) conducts long-term terrestrial vegetation monitoring as part of the nationwide Inventory and Monitoring Program of the National Park Service (NPS). The vegetation community vital sign is one of the primary-tier resources identified by SECN park managers, and monitoring is currently conducted at 15 network parks (DeVivo et al. 2008). Monitoring plants and their associated communities over time allows for targeted understanding of ecosystems within the SECN geography, which provides managers information about the degree of change within their parks’ natural vegetation. The first year of conducting this monitoring effort at four SECN parks, including 52 plots on Cape Hatteras National Seashore (CAHA), was 2019. Twelve vegetation plots were established at Cape Hatteras NS in July and August. Data collected in each plot included species richness across multiple spatial scales, species-specific cover and constancy, species-specific woody stem seedling/sapling counts and adult tree (greater than 10 centimeters [3.9 inches {in}]) diameter at breast height (DBH), overall tree health, landform, soil, observed disturbance, and woody biomass (i.e., fuel load) estimates. This report summarizes the baseline (year 1) terrestrial vegetation data collected at Cape Hatteras National Seashore in 2019. Data were stratified across four dominant broadly defined habitats within the park (Maritime Tidal Wetlands, Maritime Nontidal Wetlands, Maritime Open Uplands, and Maritime Upland Forests and Shrublands) and four land parcels (Bodie Island, Buxton, Hatteras Island, and Ocracoke Island). Noteworthy findings include: A total of 265 vascular plant taxa (species or lower) were observed across 52 vegetation plots, including 13 species not previously documented within the park. The most frequently encountered species in each broadly defined habitat included: Maritime Tidal Wetlands: saltmeadow cordgrass Spartina patens), swallow-wort (Pattalias palustre), and marsh fimbry (Fimbristylis castanea) Maritime Nontidal Wetlands: common wax-myrtle (Morella cerifera), saltmeadow cordgrass, eastern poison ivy (Toxicodendron radicans var. radicans), and saw greenbriar (Smilax bona-nox) Maritime Open Uplands: sea oats (Uniola paniculata), dune camphorweed (Heterotheca subaxillaris), and seabeach evening-primrose (Oenothera humifusa) Maritime Upland Forests and Shrublands: : loblolly pine (Pinus taeda), southern/eastern red cedar (Juniperus silicicola + virginiana), common wax-myrtle, and live oak (Quercus virginiana). Five invasive species identified as either a Severe Threat (Rank 1) or Significant Threat (Rank 2) to native plants by the North Carolina Native Plant Society (Buchanan 2010) were found during this monitoring effort. These species (and their overall frequency of occurrence within all plots) included: alligatorweed (Alternanthera philoxeroides; 2%), Japanese honeysuckle (Lonicera japonica; 10%), Japanese stilt-grass (Microstegium vimineum; 2%), European common reed (Phragmites australis; 8%), and common chickweed (Stellaria media; 2%). Eighteen rare species tracked by the North Carolina Natural Heritage Program (Robinson 2018) were found during this monitoring effort, including two species—cypress panicgrass (Dichanthelium caerulescens) and Gulf Coast spikerush (Eleocharis cellulosa)—listed as State Endangered by the Plant Conservation Program of the North Carolina Department of Agriculture and Consumer Services (NCPCP 2010). Southern/eastern red cedar was a dominant species within the tree stratum of both Maritime Nontidal Wetland and Maritime Upland Forest and Shrubland habitat types. Other dominant tree species within CAHA forests included loblolly pine, live oak, and Darlington oak (Quercus hemisphaerica). One hundred percent of the live swamp bay (Persea palustris) trees measured in these plots were experiencing declining vigor and observed with symptoms like those caused by laurel wilt......less

2021 ◽  
Author(s):  
Maxwell Boyle ◽  
Elizabeth Rico

The Southeast Coast Network (SECN) conducts long-term terrestrial vegetation monitoring as part of the nationwide Inventory and Monitoring Program of the National Park Service (NPS). The vegetation community vital sign is one of the primary-tier resources identified by SECN park managers, and monitoring is currently conducted at 15 network parks (DeVivo et al. 2008). Monitoring plants and their associated communities over time allows for targeted understanding of ecosystems within the SECN geography, which provides managers information about the degree of change within their parks’ natural vegetation. 2019 marks the first year of conducting this monitoring effort on four SECN parks, including Fort Pulaski National Monument (FOPU). Twelve vegetation plots were established at Fort Pulaski National Monument in August. Data collected in each plot included species richness across multiple spatial scales, species-specific cover and constancy, species-specific woody stem seedling/sapling counts and adult tree (greater than 10 centimeters [3.9 inches {in}]) diameter at breast height (DBH), overall tree health, landform, soil, observed disturbance, and woody biomass (i.e., fuel load) estimates. This report summarizes the baseline (year 1) terrestrial vegetation data collected at Fort Pulaski National Monument in 2019. Data were stratified across two dominant broadly defined habitats within the park (Maritime Tidal Wetlands and Maritime Upland Forests and Shrublands). Noteworthy findings include: Sixty-six vascular plant taxa were observed across 12 vegetation plots, including six taxa not previously known from the park. Plots were located on both Cockspur and McQueen’s Island. The most frequently encountered species in each broadly defined habitat included: Maritime Tidal Wetlands: smooth cordgrass (Spartina alterniflora), perennial saltmarsh aster(Symphyotrichum enuifolium), and groundsel tree (Baccharis halimifolia) Maritime Upland Forests and Shrublands: yaupon (Ilex vomitoria), southern/eastern red cedar (Juniperus silicicola + virginiana), and cabbage palmetto (Sabal palmetto). Four non-native species identified as invasive by the Georgia Exotic Pest Plant Council (GA-EPPC 2018) were found during this monitoring effort. These species (and their overall frequency of occurrence within all plots) included: Japanese honeysuckle (Lonicera japonica; 17%), bahiagrass (Paspalum notatum; 8%), Vasey’s grass (Paspalum urvillei; 8%), and European common reed (Phragmites australis; 8%). Two rare plants tracked by the Georgia Department of Natural Resources (GADNR 2013) were found during this monitoring effort. These include Florida wild privet (Forestiera segregata) and Bosc’s bluet (Oldenlandia boscii). Southern/eastern red cedar and cabbage palmetto were the most dominant species within the tree stratum of the maritime Upland Forest and Shrubland habitat type. Species that dominated the sapling and seedling strata of this type included yaupon, cabbage palmetto, groundsel tree, and Carolina laurel cherry (Prunus caroliniana). The health status of sugarberry (Celtis laevigata)—a typical canopy species in maritime forests of the South Atlantic Coastal Plain--observed on park plots appeared to be in decline, with most stems experiencing elevated levels of dieback and low vigor. Over the past decade, this species has been experiencing unexplained high rates of dieback and mortality throughout its range in the Southeastern United States; current research is focusing on what may be causing these alarming die-off patterns. Duff and litter made up the majority of downed woody biomass (fuel loads) across FOPU vegetation plots.


Data Series ◽  
10.3133/ds564 ◽  
2010 ◽  
Author(s):  
J.M. Bonisteel-Cormier ◽  
Amar Nayegandhi ◽  
J.C. Brock ◽  
C.W. Wright ◽  
D.B. Nagle ◽  
...  

Data Series ◽  
10.3133/ds578 ◽  
2011 ◽  
Author(s):  
J.M. Bonisteel-Cormier ◽  
Amar Nayegandhi ◽  
Xan Fredericks ◽  
J.C. Brock ◽  
C.W. Wright ◽  
...  

1978 ◽  
Vol 1 (16) ◽  
pp. 73
Author(s):  
James T. Jarrett

Coastal processes In the vicinity of Oregon Inlet, North Carolina were studied in connection with the design of a dual jetty system for that inlet. Oregon Inlet is the northernmost breach through the "Outer Banks" of North Carolina and is situated approximately 40 miles (64 km) north of Cape Hatteras and 90 miles (145 km) south of the ocean entrance to Chesapeake Bay, see Fig. 1. The improvements planned for this inlet are part of an overall plan of development directed at enhancing the fisheries industry of North Carolina through the provision of a modern fisheries center at the village of Wanchese, located on Roanoke Island, see Fig. 1. The general layout of the proposed jetty system is shown on Fig. 2. Certain aspects of this design will be referred to later in this paper. In addition to their structural and functional aspects, a major part of the design of the jetties concerns the structure-shore interaction and means whereby adverse shore processes will be prevented in operating the project. Obviously, the construction of jetties or any other type of littoral barrier at an inlet would disrupt the normal movement of and processes associated with longshore sediment transport. Therefore, artificial means of moving littoral materials around a stabilized inlet must be employed to assure that the adjacent beaches are maintained in at least the same state existing prior to any navigation related improvements. The need for a reliable sand bypassing method at Oregon Inlet is accentuated by the fact that the inlet is bounded on the north by the Cape Hatteras National Seashore and on the south by the Pea Island Wildlife Refuge, both of which are Federally owned beach areas managed for the purpose of preserving the natural quality of the Outer Banks environment. The design of a sand bypassing system must be based on a knowledge of the existing shore and inlet processes, particularly as they relate to the rate and directional distribution of longshore sediment transport. When the existing conditions are known, it is possible to estimate the sediment transport rates with the structures in place and, thus, predict the amount and direction in which material will have to be bypassed. This paper describes the approach taken to evaluate the existing and future longshore sediment transport in the vicinity of Oregon Inlet and briefly discusses the proposed bypassing system for the stabilized inlet.


Sign in / Sign up

Export Citation Format

Share Document