Sobolev mappings and moduli inequalities on Carnot groups
Keyword(s):
We study the mappings that satisfy moduli inequalities on Carnot groups. We prove that the homeomorphisms satisfying the moduli inequalities ($Q$-homeomor\-phisms) with a locally integrable function $Q$ are Sobolev mappings. On this base in the frameworks of the weak inverse mapping theorem, we prove that, on the Carnot groups $\mathbb G,$ the mappings inverse to Sobolev homeomorphisms of finite distortion of the class $W^1_{\nu,\loc}(\Omega;\Omega')$ belong to the Sobolev class $W^1_{1,\loc}(\Omega';\Omega)$.
2018 ◽
Vol 24
(3)
◽
pp. 1059-1074
2013 ◽
Vol 95
(1)
◽
pp. 76-128
◽
2015 ◽
Vol 34
(3)
◽
pp. 321-342
◽
1998 ◽
pp. 303-326
2006 ◽
Vol 49
(1)
◽
pp. 144-151
◽
1981 ◽
Vol 24
(1)
◽
pp. 93-122
◽
Keyword(s):
1978 ◽
Vol 21
(1)
◽
pp. 11-15
◽
Keyword(s):