Solving split equality common fixed point problem for infinite families of demicontractive mappings

2018 ◽  
Vol 34 (3) ◽  
pp. 321-331
Author(s):  
ADISAK HANJING ◽  
◽  
SUTHEP SUANTAI ◽  

In this paper, we consider the split equality common fixed point problem of infinite families of demicontractive mappings in Hilbert spaces. We introduce a simultaneous iterative algorithm for solving the split equality common fixed point problem of infinite families of demicontractive mappings and prove a strong convergence of the proposed algorithm under some control conditions.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yanrong Yu ◽  
Delei Sheng

Based on the recent work by Censor and Segal (2009 J. Convex Anal.16), and inspired by Moudafi (2010 Inverse Problems 26), we modify the algorithm of demicontractive operators proposed by Moudafi and study the modified algorithm for the class of firmly pseudodemicontractive operators to solve the split common fixed-point problem in a Hilbert space. We also give the strong convergence theorem under some appropriate conditions. Our work improves and/or develops the work of Moudafi, Censor and Segal, and other results.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Cuijie Zhang ◽  
Songnian He

We introduce a new iterative algorithm for solving the split common fixed point problem for countable family of nonexpansive operators. Under suitable assumptions, we prove that the iterative algorithm strongly converges to a solution of the problem.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2491
Author(s):  
Panadda Thongpaen ◽  
Attapol Kaewkhao ◽  
Narawadee Phudolsitthiphat ◽  
Suthep Suantai ◽  
Warunun Inthakon

In this work, we study iterative methods for the approximation of common attractive points of two widely more generalized hybrid mappings in Hilbert spaces and obtain weak and strong convergence theorems without assuming the closedness for the domain. A numerical example supporting our main result is also presented. As a consequence, our main results can be applied to solving a common fixed point problem.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 372
Author(s):  
Nishu Gupta ◽  
Mihai Postolache ◽  
Ashish Nandal ◽  
Renu Chugh

The aim of this paper is to formulate and analyze a cyclic iterative algorithm in real Hilbert spaces which converges strongly to a common solution of fixed point problem and multiple-sets split common fixed point problem involving demicontractive operators without prior knowledge of operator norm. Significance and range of applicability of our algorithm has been shown by solving the problem of multiple-sets split common null point, multiple-sets split feasibility, multiple-sets split variational inequality, multiple-sets split equilibrium and multiple-sets split monotone variational inclusion.


Sign in / Sign up

Export Citation Format

Share Document