scholarly journals Existence of solutions for a fractional nonlocal boundary value problem

2020 ◽  
Vol 36 (3) ◽  
pp. 453-462
Author(s):  
RODICA LUCA

We investigate the existence of solutions for a Riemann-Liouville fractional differential equation with a nonlinearity dependent of fractional integrals, subject to nonlocal boundary conditions which contain various fractional derivatives and Riemann-Stieltjes integrals. In the proof of our main results we use different fixed point theorems.

2018 ◽  
Vol 21 (2) ◽  
pp. 423-441 ◽  
Author(s):  
Bashir Ahmad ◽  
Rodica Luca

AbstractWe study the existence of solutions for a system of nonlinear Caputo fractional differential equations with coupled boundary conditions involving Riemann-Liouville fractional integrals, by using the Schauder fixed point theorem and the nonlinear alternative of Leray-Schauder type. Two examples are given to support our main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
N. I. Mahmudov ◽  
S. Unul

Existence and uniqueness of solutions forα∈(2,3]order fractional differential equations with three-point fractional boundary and integral conditions involving the nonlinearity depending on the fractional derivatives of the unknown function are discussed. The results are obtained by using fixed point theorems. Two examples are given to illustrate the results.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1937
Author(s):  
Abdellatif ‬Boutiara ◽  
Mohammed S. ‬Abdo ◽  
Mohammed A. ‬Almalahi ◽  
Hijaz Ahmad ◽  
Amira Ishan

This research paper is dedicated to the study of a class of boundary value problems for a nonlinear, implicit, hybrid, fractional, differential equation, supplemented with boundary conditions involving general fractional derivatives, known as the ϑ-Hilfer and ϑ-Riemann–Liouville fractional operators. The existence of solutions to the mentioned problem is obtained by some auxiliary conditions and applied Dhage’s fixed point theorem on Banach algebras. The considered problem covers some symmetry cases, with respect to a ϑ function. Moreover, we present a pertinent example to corroborate the reported results.


Author(s):  
Yuji Liu

AbstractSufficient conditions are given for the existence of solutions of anti-periodic value problems for impulsive fractional differential systems involving both Caputo and Riemann–Liouville fractional derivatives. We allow the nonlinearities$p(t)f(t,x,y,z,w)$and$q(t)g(t,x,y,z,w)$in fractional differential equations to be singular at$t=0$and$t=1$. Both$f$and$g$may be super-linear and sub-linear. The analysis relies on some well known fixed point theorems. The initial value problem discussed may be seen as a generalization of some ecological models. An example is given to illustrate the efficiency of the main theorems. Many unsuitable lemmas in recent published papers are pointed out in order not to mislead readers. A conclusion section is given at the end of the paper.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Rodica Luca

AbstractWe investigate the existence of solutions for a system of Riemann–Liouville fractional differential equations with nonlinearities dependent on fractional integrals, subject to coupled nonlocal boundary conditions which contain various fractional derivatives and Riemann–Stieltjes integrals. In the proof of our main results, we use some theorems from the fixed point theory.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 336 ◽  
Author(s):  
Bashir Ahmad ◽  
Abrar Broom ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas

In this paper, we study the existence of solutions for a new nonlocal boundary value problem of integro-differential equations involving mixed left and right Caputo and Riemann–Liouville fractional derivatives and Riemann–Liouville fractional integrals of different orders. Our results rely on the standard tools of functional analysis. Examples are constructed to demonstrate the application of the derived results.


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Lihong Zhang ◽  
Guotao Wang ◽  
Guangxing Song

We investigate the existence and uniqueness of solutions to the nonlocal boundary value problem for nonlinear impulsive fractional differential equations of orderα∈(2,3]. By using some well-known fixed point theorems, sufficient conditions for the existence of solutions are established. Some examples are presented to illustrate the main results.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Bashir Ahmad ◽  
Juan J. Nieto

We study some existence results in a Banach space for a nonlocal boundary value problem involving a nonlinear differential equation of fractional orderqgiven bycDqx(t)=f(t,x(t)),0<t<1,q∈(m−1,m],m∈ℕ,m≥2, x(0)=0, x′(0)=0, x′′(0)=0,…,x(m−2)(0)=0,x(1)=αx(η). Our results are based on the contraction mapping principle and Krasnoselskii's fixed point theorem.


2018 ◽  
Vol 16 (1) ◽  
pp. 1519-1536
Author(s):  
Bashir Ahmad ◽  
Najla Alghamdi ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas

AbstractWe introduce and study a new kind of nonlocal boundary value problems of multi-term fractional differential equations. The existence and uniqueness results for the given problem are obtained by applying standard fixed point theorems. We also construct some examples for demonstrating the application of the main results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document