scholarly journals The distribution of descents and length in a Coxeter group

10.37236/1219 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
Victor Reiner

We give a method for computing the $q$-Eulerian distribution $$ W(t,q)=\sum_{w \in W} t^{{\rm des}(w)} q^{l(w)} $$ as a rational function in $t$ and $q$, where $(W,S)$ is an arbitrary Coxeter system, $l(w)$ is the length function in $W$, and ${\rm des}(w)$ is the number of simple reflections $s \in S$ for which $l(ws) < l(w)$. Using this we compute generating functions encompassing the $q$-Eulerian distributions of the classical infinite families of finite and affine Weyl groups.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Weijia Wang

AbstractIn this paper, we investigate various properties of strong and weak twisted Bruhat orders on a Coxeter group. In particular, we prove that any twisted strong Bruhat order on an affine Weyl group is locally finite, strengthening a result of Dyer [Quotients of twisted Bruhat orders, J. Algebra163 (1994), 3, 861–879]. We also show that, for a non-finite and non-cofinite biclosed set 𝐵 in the positive system of an affine root system with rank greater than 2, the set of elements having a fixed 𝐵-twisted length is infinite. This implies that the twisted strong and weak Bruhat orders have an infinite antichain in those cases. Finally, we show that twisted weak Bruhat order can be applied to the study of the tope poset of an infinite oriented matroid arising from an affine root system.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Pietro Mongelli

International audience Based on the notion of colored and absolute excedances introduced by Bagno and Garber we give an analogue of the derangement polynomials. We obtain some basic properties of these polynomials. Moreover, we define an excedance statistic for the affine Weyl groups of type $\widetilde{B}_n, \widetilde {C}_n$ and $\widetilde {D}_n$ and determine the generating functions of their distributions. This paper is inspired by one of Clark and Ehrenborg (2011) in which the authors introduce the excedance statistic for the group of affine permutations and ask if this statistic can be defined for other affine groups. Basée sur la notion des excédances colorés et absolu introduits par Bagno and Garber, nous donnons un analogue des polynômes des dérangements. Nous obtenons quelques propriétés de base de ces polynômes. En outre, nous définissons une excédance statistique pour le groupes de Weyl affines de type $\widetilde{B}_n, \widetilde {C}_n$ et $\widetilde {D}_n$ et nous déterminons les fonctions génératrices de leurs distributions. Cet article est inspirè d'un article de Clark et Ehrenborg (2011) dans lequel les auteurs introduisent les excedances pour le groupe des permutations affine et demander si cette statistique peut être éèfinie pour les autres groupes affines.


10.37236/1356 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Henrik Eriksson ◽  
Kimmo Eriksson

We present a unified theory for permutation models of all the infinite families of finite and affine Weyl groups, including interpretations of the length function and the weak order. We also give new combinatorial proofs of Bott's formula (in the refined version of Macdonald) for the Poincaré series of these affine Weyl groups.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter considers the notion of parallel residues in a building. It begins with the assumption that Δ‎ is a building of type Π‎, which is arbitrary except in a few places where it is explicitly assumed to be spherical. Δ‎ is not assumed to be thick. The chapter then elaborates on a hypothesis which states that S is the vertex set of Π‎, (W, S) is the corresponding Coxeter system, d is the W-distance function on the set of ordered pairs of chambers of Δ‎, and ℓ is the length function on (W, S). It also presents a notation in which the type of a residue R is denoted by Typ(R) and concludes with the condition that residues R and T of a building will be called parallel if R = projR(T) and T = projT(R).


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter introduces the notion of a Tits index and the notion of the relative Coxeter diagram of a Tits index. It first defines a Tits index, which can be anisotropic or isotropic, quasi-split or split, before considering a number of propositions regarding compatible representations. It then gives a proof of the theorem that includes two assumptions about a Coxeter system, focusing on the absolute Coxeter system, the relative Coxeter system, and the relative Coxeter group of the Tits index, as well as the absolute Coxeter diagram (or absolute type), the relative Coxeter diagram (or relative type), and the absolute rank and the relative rank of the Tits index. The chapter concludes with some observations about the case that (W, S) is spherical, irreducible or affine.


10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


2014 ◽  
Vol 41 (4) ◽  
pp. 911-948 ◽  
Author(s):  
Elizabeth Beazley ◽  
Margaret Nichols ◽  
Min Hae Park ◽  
XiaoLin Shi ◽  
Alexander Youcis

10.37236/1871 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
John R. Stembridge

It is a well-known theorem of Deodhar that the Bruhat ordering of a Coxeter group is the conjunction of its projections onto quotients by maximal parabolic subgroups. Similarly, the Bruhat order is also the conjunction of a larger number of simpler quotients obtained by projecting onto two-sided (i.e., "double") quotients by pairs of maximal parabolic subgroups. Each one-sided quotient may be represented as an orbit in the reflection representation, and each double quotient corresponds to the portion of an orbit on the positive side of certain hyperplanes. In some cases, these orbit representations are "tight" in the sense that the root system induces an ordering on the orbit that yields effective coordinates for the Bruhat order, and hence also provides upper bounds for the order dimension. In this paper, we (1) provide a general characterization of tightness for one-sided quotients, (2) classify all tight one-sided quotients of finite Coxeter groups, and (3) classify all tight double quotients of affine Weyl groups.


Sign in / Sign up

Export Citation Format

Share Document