scholarly journals Plactic relations for $r$-domino tableaux

10.37236/2042 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Müge Taşkin

The work of C. Bonnafé, M.Geck, L. Iancu and T. Lam shows through two conjectures that $r$-domino tableaux have an important role in Kazhdan-Lusztig theory of type $B$ with unequal parameters. In this paper we provide plactic relations on signed permutations which determine whether two given signed permutations have the same insertion $r$-domino tableaux in Garfinkle's algorithm. Moreover, we show that a particular extension of these relations can describe Garfinkle's equivalence relation on $r$-domino tableaux which is given through the notion of open cycles. With these results we enunciate the conjectures of Bonnafé et al. and provide necessary tools for their proofs.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Müge Taşkın

International audience The recent work of Bonnafé et al. (2007) shows through two conjectures that $r$-domino tableaux have an important role in Kazhdan-Lusztig theory of type $B$ with unequal parameters. In this paper we provide plactic relations on signed permutations which determine whether given two signed permutations have the same insertion $r$-domino tableaux in Garfinkle's algorithm (1990). Moreover, we show that a particular extension of these relations can describe Garfinkle's equivalence relation on $r$-domino tableaux which is given through the notion of open cycles. With these results we enunciate the conjectures of Bonnafé et al. and provide necessary tool for their proofs.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Soojin Cho ◽  
Kyoungsuk Park

International audience Alignments, crossings and inversions of signed permutations are realized in the corresponding permutation tableaux of type $B$, and the cycles of signed permutations are understood in the corresponding bare tableaux of type $B$. We find the relation between the number of alignments, crossings and other statistics of signed permutations, and also characterize the covering relation in weak Bruhat order on Coxeter system of type $B$ in terms of permutation tableaux of type $B$. De nombreuses statistiques importantes des permutations signées sont réalisées dans les tableaux de permutations ou ”bare” tableaux de type $B$ correspondants : les alignements, croisements et inversions des permutations signées sont réalisés dans les tableaux de permutations de type $B$ correspondants, et les cycles des permutations signées sont comprises dans les ”bare” tableaux de type $B$ correspondants. Cela nous mène à relier le nombre d’alignements et de croisements avec d’autres statistiques des permutations signées, et aussi de caractériser la relation de couverture dans l’ordre de Bruhat faible sur des systèmes de Coxeter de type $B$ en termes de tableaux de permutations de type $B$.


2016 ◽  
Vol Vol. 18 no. 3 (Combinatorics) ◽  
Author(s):  
Alice L. L. Gao ◽  
Emily X. L. Gao ◽  
Patxi Laborde-Zubieta ◽  
Brian Y. Sun

In this paper, we confirm conjectures of Laborde-Zubieta on the enumeration of corners in tree-like tableaux and in symmetric tree-like tableaux. In the process, we also enumerate corners in (type $B$) permutation tableaux and (symmetric) alternative tableaux. The proof is based on Corteel and Nadeau's bijection between permutation tableaux and permutations. It allows us to interpret the number of corners as a statistic over permutations that is easier to count. The type $B$ case uses the bijection of Corteel and Kim between type $B$ permutation tableaux and signed permutations. Moreover, we give a bijection between corners and runs of size 1 in permutations, which gives an alternative proof of the enumeration of corners. Finally, we introduce conjectural polynomial analogues of these enumerations, and explain the implications on the PASEP. Comment: 26 pages, 11 figures. This is the final version for publication


10.37236/1025 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
William Y.C. Chen ◽  
Jessica C.Y. Zhang

By introducing the notion of relative derangements of type $B$, also called signed relative derangements, which are defined in terms of signed permutations, we obtain a type $B$ analogue of the well-known relation between the relative derangements and the classical derangements. While this fact can be proved by using the principle of inclusion and exclusion, we present a combinatorial interpretation with the aid of the intermediate structure of signed skew derangements.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mirkó Visontai ◽  
Nathan Williams

International audience We give a multivariate analog of the type B Eulerian polynomial introduced by Brenti. We prove that this multivariate polynomial is stable generalizing Brenti's result that every root of the type B Eulerian polynomial is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability—a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator. Nous prèsentons un raffinement multivariè d'un polynôme eulèrien de type B dèfini par Brenti. En prouvant que ce polynôme est stable nous gènèralisons un rèsultat de Brenti selon laquel chaque racine du polynôme eulèrien de type B est rèelle. Notre preuve combine un raffinement de la statistique des descentes pour les permutations signèes avec la stabilitè—une gènèralisation de la propriètè d'avoir uniquement des racines rèelles aux polynômes en plusieurs variables. La connexion est que nos polynômes eulèriens raffinès satisfont une rècurrence donnèe par un opèrateur linèaire qui prèserve la stabilitè.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Eli Bagno ◽  
Riccardo Biagioli ◽  
Mordechai Novick

International audience The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length. La statistique profondeur a été introduite par Petersen et Tenner pour tout groupe de Coxeter $W$. Elle est définie pour tout $w \in W$ à partir de ses factorisations en produit de réflexions (non nécessairement simples). Pour le type $B$, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractériser tous les éléments ayant une profondeur égale à leur longueur. Ces derniers s’avèrent être les éléments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractérisation des éléments dont la longueur absolue, la profondeur et la longueur coïncident.


10.37236/8023 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Jordan Lambert

Theta-vexillary signed permutations are elements in the hyperoctahedral group that index certain classes of degeneracy loci of type B and C. These permutations are described using triples of $s$-tuples of integers subject to specific conditions. The objective of this work is to present different characterizations of theta-vexillary signed permutations, describing them in terms of corners in the Rothe diagram and pattern avoidance.


2013 ◽  
Vol 4 (2) ◽  
pp. 191-228 ◽  
Author(s):  
Sylvie Corteel ◽  
Matthieu Josuat-Vergès ◽  
Jang Soo Kim

Author(s):  
S. Fujinaga ◽  
K. Maruyama ◽  
C.W. Williams ◽  
K. Sekhri ◽  
L. Dmochowski

Yumoto and Dmochowski (Cancer Res.27, 2098 (1967)) reported the presence of mature and immature type C leukemia virus particles in leukemic organs and tissues such as lymph nodes, spleen, thymus, liver, and kidneys of SJL/J strain mice with Hodgki's-like disease or reticulum cell neoplasm (type B). In an attempt to ascertain the possibility that this neoplasia may be of viral origin, experiments with induction and transmission of this neoplasm were carried out using cell-free extracts of leukemic organs from an SJL/J strain mouse with spontaneous disease.It has been possible to induce the disease in low-leukemia BALB/c and C3HZB strain mice and serially transfer the neoplasia by cell-free extracts of leukemic organs of these mice. Histological examination revealed the neoplasia to be of either reticulum cell-type A or type B. Serial transfer is now in its fifth passage. In addition leukemic spleen from another SJL/J strain mouse with spontaneous reticulum cell neoplasm (type A) was set up in tissue culture and is now in its 141st serial passage in vitro. Preliminary results indicate that cell-free material of 39th tissue culture passage can reproduce neoplasia in BALB/c mice.


Sign in / Sign up

Export Citation Format

Share Document