scholarly journals Theta-Vexillary Signed Permutations

10.37236/8023 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Jordan Lambert

Theta-vexillary signed permutations are elements in the hyperoctahedral group that index certain classes of degeneracy loci of type B and C. These permutations are described using triples of $s$-tuples of integers subject to specific conditions. The objective of this work is to present different characterizations of theta-vexillary signed permutations, describing them in terms of corners in the Rothe diagram and pattern avoidance.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Soojin Cho ◽  
Kyoungsuk Park

International audience Alignments, crossings and inversions of signed permutations are realized in the corresponding permutation tableaux of type $B$, and the cycles of signed permutations are understood in the corresponding bare tableaux of type $B$. We find the relation between the number of alignments, crossings and other statistics of signed permutations, and also characterize the covering relation in weak Bruhat order on Coxeter system of type $B$ in terms of permutation tableaux of type $B$. De nombreuses statistiques importantes des permutations signées sont réalisées dans les tableaux de permutations ou ”bare” tableaux de type $B$ correspondants : les alignements, croisements et inversions des permutations signées sont réalisés dans les tableaux de permutations de type $B$ correspondants, et les cycles des permutations signées sont comprises dans les ”bare” tableaux de type $B$ correspondants. Cela nous mène à relier le nombre d’alignements et de croisements avec d’autres statistiques des permutations signées, et aussi de caractériser la relation de couverture dans l’ordre de Bruhat faible sur des systèmes de Coxeter de type $B$ en termes de tableaux de permutations de type $B$.


2016 ◽  
Vol Vol. 18 no. 3 (Combinatorics) ◽  
Author(s):  
Alice L. L. Gao ◽  
Emily X. L. Gao ◽  
Patxi Laborde-Zubieta ◽  
Brian Y. Sun

In this paper, we confirm conjectures of Laborde-Zubieta on the enumeration of corners in tree-like tableaux and in symmetric tree-like tableaux. In the process, we also enumerate corners in (type $B$) permutation tableaux and (symmetric) alternative tableaux. The proof is based on Corteel and Nadeau's bijection between permutation tableaux and permutations. It allows us to interpret the number of corners as a statistic over permutations that is easier to count. The type $B$ case uses the bijection of Corteel and Kim between type $B$ permutation tableaux and signed permutations. Moreover, we give a bijection between corners and runs of size 1 in permutations, which gives an alternative proof of the enumeration of corners. Finally, we introduce conjectural polynomial analogues of these enumerations, and explain the implications on the PASEP. Comment: 26 pages, 11 figures. This is the final version for publication


10.37236/1025 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
William Y.C. Chen ◽  
Jessica C.Y. Zhang

By introducing the notion of relative derangements of type $B$, also called signed relative derangements, which are defined in terms of signed permutations, we obtain a type $B$ analogue of the well-known relation between the relative derangements and the classical derangements. While this fact can be proved by using the principle of inclusion and exclusion, we present a combinatorial interpretation with the aid of the intermediate structure of signed skew derangements.


10.37236/3224 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
José Manuel Gómez

Let $n\ge 1$ be an integer and let $B_{n}$ denote the hyperoctahedral group of rank $n$. The group $B_{n}$ acts on the polynomial ring $Q[x_{1},\dots,x_{n},y_{1},\dots,y_{n}]$ by signed permutations simultaneously on both of the sets of variables $x_{1},\dots,x_{n}$ and $y_{1},\dots,y_{n}.$ The invariant ring $M^{B_{n}}:=Q[x_{1},\dots,x_{n},y_{1},\dots,y_{n}]^{B_{n}}$  is the ring of diagonally signed-symmetric polynomials. In this article, we provide an explicit free basis of $M^{B_{n}}$ as a module over the ring of symmetric polynomials on both of the sets of variables $x_{1}^{2},\dots, x^{2}_{n}$ and  $y_{1}^{2},\dots, y^{2}_{n}$ using signed descent monomials.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mirkó Visontai ◽  
Nathan Williams

International audience We give a multivariate analog of the type B Eulerian polynomial introduced by Brenti. We prove that this multivariate polynomial is stable generalizing Brenti's result that every root of the type B Eulerian polynomial is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability—a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator. Nous prèsentons un raffinement multivariè d'un polynôme eulèrien de type B dèfini par Brenti. En prouvant que ce polynôme est stable nous gènèralisons un rèsultat de Brenti selon laquel chaque racine du polynôme eulèrien de type B est rèelle. Notre preuve combine un raffinement de la statistique des descentes pour les permutations signèes avec la stabilitè—une gènèralisation de la propriètè d'avoir uniquement des racines rèelles aux polynômes en plusieurs variables. La connexion est que nos polynômes eulèriens raffinès satisfont une rècurrence donnèe par un opèrateur linèaire qui prèserve la stabilitè.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Eli Bagno ◽  
Riccardo Biagioli ◽  
Mordechai Novick

International audience The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length. La statistique profondeur a été introduite par Petersen et Tenner pour tout groupe de Coxeter $W$. Elle est définie pour tout $w \in W$ à partir de ses factorisations en produit de réflexions (non nécessairement simples). Pour le type $B$, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractériser tous les éléments ayant une profondeur égale à leur longueur. Ces derniers s’avèrent être les éléments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractérisation des éléments dont la longueur absolue, la profondeur et la longueur coïncident.


10.37236/1836 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Bernstein

MacMahon's classic theorem states that the length and major index statistics are equidistributed on the symmetric group $S_n$. By defining natural analogues or generalizations of those statistics, similar equidistribution results have been obtained for the alternating group $A_n$ by Regev and Roichman, for the hyperoctahedral group $B_n$ by Adin, Brenti and Roichman, and for the group of even-signed permutations $D_n$ by Biagioli. We prove analogues of MacMahon's equidistribution theorem for the group of signed even permutations and for its subgroup of even-signed even permutations.


10.37236/2042 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Müge Taşkin

The work of C. Bonnafé, M.Geck, L. Iancu and T. Lam shows through two conjectures that $r$-domino tableaux have an important role in Kazhdan-Lusztig theory of type $B$ with unequal parameters. In this paper we provide plactic relations on signed permutations which determine whether two given signed permutations have the same insertion $r$-domino tableaux in Garfinkle's algorithm. Moreover, we show that a particular extension of these relations can describe Garfinkle's equivalence relation on $r$-domino tableaux which is given through the notion of open cycles. With these results we enunciate the conjectures of Bonnafé et al. and provide necessary tools for their proofs.


10.37236/6545 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Naiomi T. Cameron ◽  
Kendra Killpatrick

We consider the classical Mahonian statistics on the set $B_n(\Sigma)$ of signed permutations in the hyperoctahedral group $B_n$ which avoid all patterns in $\Sigma$, where $\Sigma$ is a set of patterns of length two.  In 2000, Simion gave the cardinality of $B_n(\Sigma)$ in the cases where $\Sigma$ contains either one or two patterns of length two and showed that $\left|B_n(\Sigma)\right|$ is constant whenever $\left|\Sigma\right|=1$, whereas in most but not all instances where $\left|\Sigma\right|=2$, $\left|B_n(\Sigma)\right|=(n+1)!$.  We answer an open question of Simion by providing bijections from $B_n(\Sigma)$ to $S_{n+1}$ in these cases where $\left|B_n(\Sigma)\right|=(n+1)!$.  In addition, we extend Simion's work by providing a combinatorial proof in the language of signed permutations for the major index on $B_n(21, \bar{2}\bar{1})$ and by giving the major index on $D_n(\Sigma)$ for $\Sigma =\{21, \bar{2}\bar{1}\}$ and $\Sigma=\{12,21\}$.  The main result of this paper is to give the inversion generating functions for $B_n(\Sigma)$ for almost all sets $\Sigma$ with $\left|\Sigma\right|\leq2.$


Author(s):  
Iharantsoa Vero Raharinirina

In this paper we consider cryptographic applications of the arithmetic on the hyperoctahedral group. On an appropriate subgroup of the latter, we particularly propose to construct public key cryptosystems based on the discrete logarithm. The fact that the group of signed permutations has rich properties provides fast and easy implementation and makes these systems resistant to attacks like the Pohlig-Hellman algorithm. The only negative point is that storing and transmitting permutations need large memory. Using together the hyperoctahedral enumeration system and what is called subexceedant functions, we define a one-to-one correspondence between natural numbers and signed permutations with which we label the message units.


Sign in / Sign up

Export Citation Format

Share Document