scholarly journals Factoring in Embedding Dimension Three Numerical Semigroups

10.37236/410 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
F. Aguiló-Gost ◽  
P. A. García-Sánchez

Let us consider a $3$-numerical semigroup $S=\langle{a,b,N}\rangle$. Given $m\in S$, the triple $(x,y,z)\in\mathbb{N}^3$ is a factorization of $m$ in $S$ if $xa+yb+zN=m$. This work is focused on finding the full set of factorizations of any $m\in S$ and as an application we compute the catenary degree of $S$. To this end, we relate a 2D tessellation to $S$ and we use it as a main tool.

2015 ◽  
Vol 15 (01) ◽  
pp. 1650007 ◽  
Author(s):  
S. T. Chapman ◽  
P. A. García-Sánchez ◽  
Z. Tripp ◽  
C. Viola

In this paper, we find the ω-value of the generators of any numerical semigroup with embedding dimension three. This allows us to determine all possible orderings of the ω-values of the generators. In addition, we relate the ω-value of the numerical semigroup to its catenary degree.


2018 ◽  
Vol 30 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Pedro A. García-Sánchez ◽  
David Llena ◽  
Alessio Moscariello

Abstract We present a fast algorithm to compute the Delta set of a nonsymmetric numerical semigroup with embedding dimension three. We also characterize the sets of integers that are the Delta set of a numerical semigroup of this kind.


2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Belgin Özer ◽  
Sibel Kanbay

In this paper, we mainly study the minimal presentations of numerical semigroups. Moreover, we examine the concept of gluing, complete intersection, catenary degree, elasticity of some numerical semigroups.  


2017 ◽  
Vol 13 (05) ◽  
pp. 1335-1347 ◽  
Author(s):  
Ze Gu ◽  
Xilin Tang

Let [Formula: see text] be two positive integers such that [Formula: see text] and [Formula: see text] the numerical semigroup generated by [Formula: see text]. Then [Formula: see text] is the Thabit numerical semigroup introduced by J. C. Rosales, M. B. Branco and D. Torrão. In this paper, we give formulas for computing the Frobenius number, the genus and the embedding dimension of [Formula: see text].


2020 ◽  
Vol 30 (4) ◽  
pp. 257-264
Author(s):  
Ze Gu

AbstractLet b, n be two positive integers such that b ≥ 2, and S(b, n) be the numerical semigroup generated by $\begin{array}{} \{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\} \end{array}$. Applying two order relations, we give formulas for computing the embedding dimension, the Frobenius number, the type and the genus of S(b, n).


2015 ◽  
Vol 25 (06) ◽  
pp. 1043-1053 ◽  
Author(s):  
Francesco Strazzanti

Given two numerical semigroups S and T and a positive integer d, S is said to be one over d of T if S = {s ∈ ℕ | ds ∈ T} and in this case T is called a d-fold of S. We prove that the minimal genus of the d-folds of S is [Formula: see text], where g and f denote the genus and the Frobenius number of S. The case d = 2 is a problem proposed by Robles-Pérez, Rosales, and Vasco. Furthermore, we find the minimal genus of the symmetric doubles of S and study the particular case when S is almost symmetric. Finally, we study the Frobenius number of the quotient of some families of numerical semigroups.


Sign in / Sign up

Export Citation Format

Share Document