scholarly journals Apollo 11 and Fundamental Science

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Álvaro De Rújula

Since Apollo 11 landed its crew on the moon, pessimistic observers have suggested that the only interesting spin-off from the expedition was Moon Boots. Not so. Apollo 11 made possible highly accurate measurements of the distance between the earth and the moon, exquisitely precise tests of the strong equivalence principle, as well as improvements of technologies used in daily life.

2009 ◽  
Vol 18 (07) ◽  
pp. 1129-1175 ◽  
Author(s):  
JAMES G. WILLIAMS ◽  
SLAVA G. TURYSHEV ◽  
DALE H. BOGGS

A primary objective of the lunar laser ranging (LLR) experiment is to provide precise observations of the lunar orbit that contribute to a wide range of science investigations. In particular, time series of the highly accurate measurements of the distance between the Earth and the Moon provide unique information used to determine whether, in accordance with the equivalence principle (EP), these two celestial bodies are falling toward the Sun at the same rate, despite their different masses, compositions, and gravitational self-energies. Thirty-five years since their initiation, analyses of precision laser ranges to the Moon continue to provide increasingly stringent limits on any violation of the EP. Current LLR solutions give (-1.0 ± 1.4) × 10-13 for any possible inequality in the ratios of the gravitational and inertial masses for the Earth and Moon, Δ(MG/MI). This result, in combination with laboratory experiments on the weak equivalence principle, yields a strong equivalence principle (SEP) test of Δ(MG/MI) SEP = (-2.0 ± 2.0) × 10-13. Such an accurate result allows other tests of gravitational theories. The result of the SEP test translates into a value for the corresponding SEP violation parameter η of (4.4 ± 4.5) × 10-4, where η = 4β - γ - 3 and both γ and β are parametrized post-Newtonian (PPN) parameters. Using the recent result for the parameter γ derived from the radiometric tracking data from the Cassini mission, the PPN parameter β (quantifying the nonlinearity of gravitational superposition) is determined to be β - 1 = (1.2 ± 1.1) × 10-4. We also present the history of the LLR effort and describe the technique that is being used. Focusing on the tests of the EP, we discuss the existing data, and characterize the modeling and data analysis techniques. The robustness of the LLR solutions is demonstrated with several different approaches that are presented in the text. We emphasize that near-term improvements in the LLR accuracy will further advance the research on relativistic gravity in the solar system and, most notably, will continue to provide highly accurate tests of the EP.


2017 ◽  
Vol 26 (05) ◽  
pp. 1741021
Author(s):  
Fabrizio De Marchi ◽  
Giuseppe Congedo

The validity of General Relativity (GR), after 100 years, is supported by solid experimental evidence. However, there is a lot of interest in pushing the limits of precision by other experiments. Here, we focus our attention on the equivalence principle (EP), in particular, the strong form. The results of ground experiments and Lunar Laser Ranging (LLR) have provided the best upper limit on the Nordtvedt parameter [Formula: see text] that models deviations from the strong EP. Its uncertainty is currently [Formula: see text]. In the first part of this paper, we will describe the experiment, to measure [Formula: see text], that will be done by the future mission BepiColombo (BC). The expected precision on [Formula: see text] is [Formula: see text]. In the second part, we will consider the ranging between the Earth and a spacecraft (SC) orbiting near the Sun–Earth Lagrangian points to get an independent measurement of [Formula: see text]. In this case, we forecast a constraint similar to that achieved by LLR.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 617-626 ◽  
Author(s):  
C. S. UNNIKRISHNAN ◽  
G. T. GILLIES

The tremendous progress in the science and technology of timing devices and laser sources has reached a stage where their stability and coherence are sufficient for implementing unbalanced interferometers over a length scale exceeding the Earth–Moon distance. This opens up the possibility of optical homodyne interferometry over such distances, either to the Moon or to artificial satellites that are at large distances from the Earth. The precision of the measurement of changes in the orbital distance would increase by a factor of 104 or more, enabling new ultrahigh precision tests of the equivalence principle, study of gravitomagnetism, and of subtle gravitational phenomena, including the constancy of the gravitational constant and possible gravitational expansion of space. It would enable geodesy and tide studies with unprecedented precision. Such interferometers would also be useful for the detection and study of low frequency gravitational waves.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


1962 ◽  
Vol 14 ◽  
pp. 39-44
Author(s):  
A. V. Markov

Notwithstanding the fact that a number of defects and distortions, introduced in transmission of the images of the latter to the Earth, mar the negatives of the reverse side of the Moon, indirectly obtained on 7 October 1959 by the automatic interplanetary station (AIS), it was possible to use the photometric measurements of the secondary (terrestrial) positives of the reverse side of the Moon in the experiment of the first comparison of the characteristics of the surfaces of the visible and invisible hemispheres of the Moon.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Pyrrhon Amathes ◽  
Paul Christodoulides

Photography can be used for pleasure and art but can also be used in many disciplines of science, because it captures the details of the moment and can serve as a proving tool due to the information it preserves. During the period of the Apollo program (1969 to 1972), the National Aeronautics and Space Administration (NASA) successfully landed humans on the Moon and showed hundreds of photos to the world presenting the travel and landings. This paper uses computer simulations and geometry to examine the authenticity of one such photo, namely Apollo 17 photo GPN-2000-00113. In addition, a novel approach is employed by creating an experimental scene to illustrate details and provide measurements. The crucial factors on which the geometrical analysis relies are locked in the photograph and are: (a) the apparent position of the Earth relative to the illustrated flag and (b) the point to which the shadow of the astronaut taking the photo reaches, in relation to the flagpole. The analysis and experimental data show geometrical and time mismatches, proving that the photo is a composite.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sune G. Nielsen ◽  
David V. Bekaert ◽  
Maureen Auro

AbstractIsotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.


Sign in / Sign up

Export Citation Format

Share Document