Oberthürite, Rh3(Ni,Fe)32S32 and torryweiserite, Rh5Ni10S16, two new platinum-group minerals from the Marathon deposit, Coldwell Complex, Ontario, Canada: Descriptions, crystal-chemical considerations, and comments on the geochemistry of rhodium

2021 ◽  
Vol 59 (6) ◽  
pp. 1833-1863
Author(s):  
Andrew M. McDonald ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
Kirk C. Ross ◽  
Doreen E. Ames ◽  
...  

ABSTRACT Oberthürite, Rh3(Ni,Fe)32S32, and torryweiserite, Rh5Ni10S16, are two new platinum-group minerals discovered in a heavy-mineral concentrate from the Marathon deposit, Coldwell Complex, Ontario, Canada. Oberthürite is cubic, space group , with a 10.066(5) Å, V 1019.9(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.06(100)(311), 2.929(18)(222), 1.9518(39)(115,333), 1.7921(74)(440), 1.3184(15)(137,355) and 1.0312(30)(448). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite–ferhodsite), kotulskite, and mertieite-II, and the base-metal sulfides, chalcopyrite, bornite, millerite, and Rh-bearing pentlandite. Grains of oberthürite are up to 100 × 100 μm and the mineral commonly develops in larger composites with coldwellite, isoferroplatinum, zvyagintsevite, Rh-bearing pentlandite, and torryweiserite. The mineral is creamy brown compared to coldwellite and bornite, white when compared to torryweiserite, and gray when compared chalcopyrite and millerite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 36.2 (470 nm), 39.1 (546 nm), 40.5 (589 nm), and 42.3 (650 nm). The calculated density is 5.195 g/cm3, determined using the empirical formula and the unit-cell parameter from the refined crystal structure. The average result (n = 11) using energy-dispersive spectrometry is: Rh 10.22, Ni 38.83, Fe 16.54, Co 4.12, Cu 0.23 S 32.36, total 100.30 wt.%, which corresponds to (Rh2Ni0.67Fe0.33)Σ3.00(Ni19.30Fe9.09Co2.22Rh1.16Cu0.12)∑31.89S32.11, based on 67 apfu and crystallochemical considerations, or ideally, Rh3Ni32S32. The name is for Dr. Thomas Oberthür, a well-known researcher on alluvial platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Torryweiserite is rhombohedral, space group , with a 7.060(1), c 34.271(7) Å, V 1479.3(1), Z = 3. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.080(33)(021), 3.029(58)(116,0110), 1.9329(30)(036,1115,1210), 1.7797(100)(220,0216), 1.2512(49)(0416), and 1.0226(35)(060,2416,0232). Associated minerals are the same as for oberthürite. The mineral is slightly bluish compared to oberthürite, gray when compared to chalcopyrite, zvyagintsevite, and keithconnite, and pale creamy brown when compared to bornite and coldwellite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 34.7 (470 nm), 34.4 (546 nm), 33.8 (589 nm), and 33.8 (650 nm). The calculated density is 5.555 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 10) using wavelength-dispersive spectrometry is: Rh 28.02, Pt 2.56, Ir 1.98, Ru 0.10, Os 0.10, Ni 17.09, Fe 9.76, Cu 7.38, Co 1.77 S 30.97, total 99.73 wt.%, which corresponds to (Rh4.50Pt0.22Ir0.17Ni0.08Ru0.02Os0.01)∑5.00(Ni4.73Fe2.89Cu1.92Co0.50)Σ10.04S15.96, based on 31 apfu and crystallochemical considerations, or ideally Rh5Ni10S16. The name is for Dr. Thorolf (‘Torry') W. Weiser, a well-known researcher on platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Both minerals have crystal structures similar to those of pentlandite and related minerals: oberthürite has two metal sites that are split relative to that in pentlandite, and torryweiserite has a layered structure, comparable, but distinct, to that developed along [111] in pentlandite. Oberthürite and torryweiserite are thought to develop at ∼ 500 °C under conditions of moderate fS2, through ordering of Rh-Ni-S nanoparticles in precursor Rh-bearing pentlandite during cooling. The paragenetic sequence of the associated Rh-bearing minerals is: Rh-bearing pentlandite → oberthürite → torryweiserite → ferhodsite-series minerals, reflecting a relative increase in Rh concentration with time. The final step, involving the formation of rhodsite-series minerals, was driven via by the oxidation of Fe2+ → Fe3+ and subsequent preferential removal of Fe3+, similar to the process involved in the conversion of pentlandite to violarite. Summary comments are made on the occurrence and distribution of Rh, minerals known to have Rh-dominant chemistries, the potential existence of both Rh3+ and Rh2+, and the crystallochemical factors influencing accommodation of Rh in minerals.

2021 ◽  
Vol 59 (6) ◽  
pp. 1865-1886
Author(s):  
Andrew M. McDonald ◽  
Doreen E. Ames ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
William Zhe ◽  
...  

ABSTRACT Marathonite, Pd25Ge9, and palladogermanide, Pd2Ge, are two new platinum-group minerals discovered in the Marathon deposit, Coldwell Complex, Ontario, Canada. Marathonite is trigonal, space group P3, with a 7.391(1), c 10.477(2) Å, V 495.6(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 2.436(10)(014,104,120,210), 2.374(29)(023,203,121,211), 2.148(100)(114,030), 1.759(10)(025,205,131,311), 1.3605(13)(233,323,036,306), and 1.2395(14)(144,414,330). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite-ferhodsite), kotulskite and mertieite-II, the base-metal sulfides, chalcopyrite, bornite, millerite and Rh-bearing pentlandite, oberthürite and torryweiserite, and silicates including a clinoamphibole and a Fe-rich chlorite-group mineral. Rounded, elongated grains of marathonite are up to 33 × 48 μm. Marathonite is white, but pinkish brown compared to palladogermanide and bornite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 40.8 (470 nm), 44.1 (546 nm), 45.3 (589 nm), and 47.4 (650 nm). The calculated density is 10.933 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 19) using energy-dispersive spectrometry is: Si 0.11, S 0.39, Cu 2.32, Ge 18.46, Pd 77.83, Pt 1.10, total 100.22 wt.%, corresponding to the empirical formula (based on 34 apfu): (Pd23.82Cu1.19Pt0.18)Σ25.19(Ge8.28S0.40Si0.13)∑8.81 and the simplified formula is Pd25Ge9. The name is for the town of Marathon, Ontario, Canada, after which the Marathon deposit (Coldwell complex) is named. Results from electron backscattered diffraction show that palladogermanide is isostructural with synthetic Pd2Ge. Based on this, palladogermanide is considered to be hexagonal, space group , with a 6.712(1), c 3.408(1) Å, V 133.0(1), Z = 3. The seven strongest lines of the X-ray powder-diffraction pattern calculated for the synthetic analogue [d in Å (I)(hkl)] are: 2.392(100)(111), 2.211(58)(201), 2.197(43)(210), 1.937(34)(300), 1.846(16)(211), 1.7037(16)(002), and 1.2418(18)(321). Associated minerals are the same as for marathonite. Palladogermanide occurs as an angular, anhedral grain measuring 29 × 35 μm. It is white, but grayish-white when compared to marathonite, bornite, and chalcopyrite. Compared to zvyagintsevite, palladogermanide is a dull gray. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths for Ro and Ro' are: 46.8, 53.4 (470 nm), 49.5, 55.4 (546 nm), 50.1, 55.7 (589 nm), and 51.2, 56.5 (650 nm). The calculated density is 10.74 g/cm3, determined using the empirical formula and the unit-cell parameters from synthetic Pd2Ge. The average result (n = 14) using wavelength-dispersive spectrometry is: Si 0.04, Fe 0.14, Cu 0.06, Ge 25.21, Te 0.30, Pd 73.10, Pt 0.95, Pb 0.08, total 99.88 wt.%, corresponding (based on 3 apfu) to: (Pd1.97Pt0.01Fe0.01)Σ1.99(Ge1.00Te0.01)∑1.01 or ideally, Pd2Ge. The name is for its chemistry and relationship to palladosilicide. The crystal structure of marathonite was solved by single-crystal X-ray diffraction methods (R = 7.55, wR2 = 19.96 %). It is based on two basic modules, one ordered and one disordered, that alternate along [001]. The ordered module, ∼7.6 Å in thickness, is based on a simple Pd4Ge3 unit cross-linked by Pd atoms to form a six-membered trigonal ring that in turn gives rise to a layered module containing fully occupied Pd and Ge sites. This alternates along [001] with a highly disordered module, ∼3 Å in thickness, composed of a number of partially occupied Pd and Ge sites. The combination of sites in the ordered and disordered modules give the stoichiometric formula Pd25Ge9. The observed paragenetic sequence is: bornite → marathonite → palladogermanide. Phase equilibria studies in the Pd-Ge system show Pd25Ge9 (marathonite) to be stable over the range of 550–970 °C and that Pd2Ge (palladogermanide) is stable down to 200 °C. Both minerals are observed in an assemblage of clinoamphibole, a Fe-rich, chlorite-group mineral, and fragmented chalcopyrite, suggesting physical or chemical alteration, possibly both. Palladogermanide is also found associated with a magnetite of near end-member composition, potentially indicating a relative increase in fO2. Both minerals are considered to have developed at temperatures of 500–600 °C, under conditions of low fS2 and fO2, given the requirements needed to fractionate, concentrate, and form minerals with Ge-dominant chemistries.


2010 ◽  
Vol 74 (5) ◽  
pp. 863-869 ◽  
Author(s):  
S. J. Mills ◽  
A. R. Kampf ◽  
P. A. Williams ◽  
P. Leverett ◽  
G. Poirier ◽  
...  

AbstractHydroniumpharmacosiderite, ideally (H3O)Fe4(AsO4)3(OH)4·4H2O, is a new mineral from Cornwall, UK, probably from the St. Day group of mines. It occurs as a single yellowish green, slightly elongated cube, measuring 0.17 mm ×0.14 mm ×0.14 mm. The mineral is transparent with a vitreous lustre. It is brittle with a cleavage on {001}, has an irregular fracture, a white streak and a Mohs hardness of 2–3 (determined on H3O-exchanged pharmacosiderite). Hydroniumpharmacosiderite has a calculated density of 2.559 g cm–3 for the empirical formula. The empirical formula, based upon 20.5 oxygen atoms, is: [(H3O)0.50K0.48Na0.06]1.04(Fe3.79Al0.22)4.01[(As2.73P0.15)2.88O12](OH)4·4H2.14O. The five strongest lines in the X-ray powder diffraction pattern are [dobs(Å),Iobs,(hkl)]: 8.050,100,(001); 3.265,35,(112); 2.412,30,(113); 2.830,23,(202); 4.628,22,(111). Hydroniumpharmacosiderite is cubic, space group with a = 7.9587(2) Å, V = 504.11(2) Å3 and Z = 1. The crystal structure was solved by direct methods and refined to R1 = 0.0481 for 520 reflections with I > 2σ(I). The structure is consistent with determinations for H3O-exhchanged pharmacosiderite and the general pharmacosiderite structure type.


2011 ◽  
Vol 75 (1) ◽  
pp. 135-144 ◽  
Author(s):  
S. J. Mills ◽  
M. S. Rumsey ◽  
G. Favreau ◽  
J. Spratt ◽  
M. Raudsepp ◽  
...  

AbstractBariopharmacoalumite, ideally Ba0.5Al4(AsO4)3(OH)4·4H2O, is a new mineral from Cap Garonne, France. It occurs in several places within the mine as colourless to pale yellow interpenetrating cubes up to 0.5 mm across. Bariopharmacoalumite is transparent to translucent, with a white streak, has an adamantine lustre and imperfect cleavage on {001}. The Vickers hardness is 234.35 and the Mohs harness is 3.5. Bariopharmacoalumite is isotropic, with n = 1.573 (upper estimate) [calculated from reflectance values at 589 nm using Fresnel Equations]. The empirical formula, based on 20 oxygen atoms, is: (Ba0.54Cu0.03K0.01)Σ0.58(Al3.99Fe0.02)Σ4.01(AsO4)3.00(OH)3.85O0.15·4H2O and the calculated density (on the basis of the empirical formula and single-crystal unit cell) is 2.580 g/cm3. The four strongest lines in the X-ray powder diffraction pattern are [dobs(Å), Iobs,(hkl)]: 7.759, 100, (001); 5.485, 27, (011); 3.878, 27, (002); 4.454, 18, (011). Bariopharmacoalumite from Cap Garonne is cubic, space group P4̄3m with a = 7.742(4) Å, V = 464.2(4) Å3 and Z = 1. The crystal structure was solved by direct methods and refined to R1 = 0.0705 for 215 reflections with I > 4σ(I) and is consistent with members of the pharmacosiderite supergroup. Data are also presented from zoned bariopharmacoalumite–bariopharmacosiderite crystals found at the Mina Grande mine, Chile.


2004 ◽  
Vol 42 (2) ◽  
pp. 563-582 ◽  
Author(s):  
T. Oberthur ◽  
F. Melcher ◽  
L. Gast ◽  
C. Wohrl ◽  
J. Lodziak

2014 ◽  
Vol 117 (2) ◽  
pp. 255-274 ◽  
Author(s):  
T. OBERTHUR ◽  
T. W. WEISER ◽  
F. MELCHER

2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


1999 ◽  
Vol 14 (4) ◽  
pp. 258-260 ◽  
Author(s):  
W. Paszkowicz

X-ray powder diffraction pattern for InN synthesized using a microwave plasma source of nitrogen is reported. The data were obtained with the help of an automated Bragg-Brentano diffractometer using Ni-filtered CuKα radiation. The lattice parameters for the wurtzite-type unit cell are ao=3.5378(1) Å, co=5.7033(1) Å. The calculated density is 6.921±0.002 g/cm3.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 581 ◽  
Author(s):  
Thomas Oberthür

Diverse studies were performed in order to investigate the behavior of the platinum-group minerals (PGM) in the weathering cycle in the Bushveld Complex of South Africa and the Great Dyke of Zimbabwe. Samples were obtained underground, from core, in surface outcrops, and from alluvial sediments in rivers draining the intrusions. The investigations applied conventional mineralogical methods (reflected light microscopy) complemented by modern techniques (scanning electron microscopy (SEM), mineral liberation analysis (MLA), electron-probe microanalysis (EPMA), and LA-ICPMS analysis). This review aims at combining the findings to a coherent model also with respect to the debate regarding allogenic versus authigenic origin of placer PGM. In the pristine sulfide ores, the PGE are present as discrete PGM, dominantly PGE-bismuthotellurides, -sulfides, -arsenides, -sulfarsenides, and -alloys, and substantial though variable proportions of Pd and Rh are hosted in pentlandite. Pt–Fe alloys, sperrylite, and most PGE-sulfides survive the weathering of the ores, whereas the base metal sulfides and the (Pt,Pd)-bismuthotellurides are destroyed, and ill-defined (Pt,Pd)-oxides or -hydroxides develop. In addition, elevated contents of Pt and Pd are located in Fe/Mn/Co-oxides/hydroxides and smectites. In the placers, the PGE-sulfides experience further modification, whereas sperrylite largely remains a stable phase, and grains of Pt–Fe alloys and native Pt increase in relative proportion. In the Bushveld/Great Dyke case, the main impact of weathering on the PGM assemblages is destruction of the unstable PGM and PGE-carriers of the pristine ores and of the intermediate products of the oxidized ores. Dissolution and redistribution of PGE is taking place, however, the newly-formed products are thin films, nano-sized particles, small crystallites, or rarely µm-sized grains primarily on substrates of precursor detrital/allogenic PGM grains, and they are of subordinate significance. In the Bushveld/Great Dyke scenario, and in all probability universally, authigenic growth and formation of discrete, larger PGM crystals or nuggets in the supergene environment plays no substantial role, and any proof of PGM “neoformation” in a grand style is missing. The final PGM suite which survived the weathering process en route from sulfide ores via oxidized ores into placers results from the continuous elimination of unstable PGM and the dispersion of soluble PGE. Therefore, the alluvial PGM assemblage represents a PGM rest spectrum of residual, detrital grains.


Sign in / Sign up

Export Citation Format

Share Document