ProSense*/ProSense – Improving the forecast quality of detailed planning

2016 ◽  
Vol 106 (04) ◽  
pp. 218-223
Author(s):  
C. Reuter ◽  
F. Brambring ◽  
T. Hempel ◽  
A. Gützlaff

Immer kundenindividuellere Prozessketten sowie eine gleichzeitig steigende Marktdynamik stellen Unternehmen und insbesondere die Produktionssteuerung vor große Herausforderungen. Das Forschungsprojekt ProSense erarbeitet Lösungen für eine Produktionssteuerung in Zeiten von Industrie 4.0. Durch eine Analyse der Abweichungen zwischen Plan- und Ist-Daten wird die Verbesserung der Planungsgüte in der Produktion erreicht.   Customer-specific process chains and increasingly dynamic market conditions pose a major challenge for manufacturing companies and especially their production planning and control processes. The research project ProSense develops solutions for a production control in the context of Industrie 4.0. An analysis of the variance between planned and actual production data improves the planning quality.

2015 ◽  
Vol 105 (06) ◽  
pp. 422-426
Author(s):  
C. Reuter ◽  
F. Brambring ◽  
T. Hempel ◽  
F. Schulte ◽  
L. Dambeck

Immer kundenindividuellere Prozessketten sowie eine gleichzeitig steigende Marktdynamik stellen Unternehmen und insbesondere die Produktionssteuerung vor große Herausforderungen. Das Forschungsprojekt ProSense erarbeitet Lösungen für eine Produktionssteuerung in Zeiten von Industrie 4.0. Auf Basis kybernetischer Unterstützungssysteme und intelligenter Sensorik soll der Entscheider optimal bei Planung und Steuerung der Produktion unterstützt werden.   Customer-specific process chains and increasingly dynamic market conditions pose a major challenge for manufacturing companies and especially their production planning and control processes. The research project ProSense develops solutions for a production control in the context of Industrie 4.0. Building on cybernetic support systems and intelligent sensors, the employees can be optimally supported in decisions concerning production planning and control.


2020 ◽  
Vol 110 (04) ◽  
pp. 255-260
Author(s):  
Marvin Carl May ◽  
Andreas Kuhnle ◽  
Gisela Lanza

Im Rahmen der stufenweisen Umsetzung von Industrie 4.0 erreicht die Vernetzung und Digitalisierung die gesamte Produktion. Den physischen Produktionsprozess nicht nur cyber-physisch zu begleiten, sondern durch eine virtuelle, digitale Kopie zu erfassen und zu optimieren, stellt ein enormes Potenzial für die Produktionssystemplanung und -steuerung dar. Zudem erlauben digitale Modelle die Anwendung intelligenter Produktionssteuerungsverfahren und leisten damit einen Beitrag zur Verbreitung optimierender adaptiver Systeme.   In the wake of implementing Industrie 4.0 both integration and digitalization affect the entire production. Physical production systems offer enormous potential for production planning and control through virtual, digital copies and their optimization, well beyond purely cyber-physical production system extensions. Furthermore, digital models enable the application of intelligent production control and hence contribute to the dissemination of adaptively optimizing systems.


2015 ◽  
Vol 105 (04) ◽  
pp. 204-208
Author(s):  
D. Kreimeier ◽  
E. Müller ◽  
F. Morlock ◽  
D. Jentsch ◽  
H. Unger ◽  
...  

Kurzfristige sowie ungeplante Änderungen – wie Auftragsschwankungen, Maschinenausfälle oder Krankheitstage der Mitarbeiter – beeinflussen die Produktionsplanung und -steuerung (PPS) von Industriefirmen. Trends wie Globalisierung und erhöhter Marktdruck verstärken diese Probleme. Zur Komplexitätsbewältigung bei der Entscheidungsfindung zur Fertigungssteuerung kommen in der Produktion Werkzeuge der „Digitalen Fabrik“, beispielsweise Simulationsprogramme, oder IT (Informationstechnologie)-Lösungen, wie Manufacturing Execution Systems (MES), zum Einsatz. Eine Verknüpfung dieser Bereiche würde einen echtzeitfähigen Datenaustausch erlauben, der wiederum eine echtzeitfähige Entscheidungsunterstützung bietet. Der Fachbeitrag stellt hierfür einen Lösungsansatz vor.   Sudden and unsystematic changes, such as fluctuations in order flow, machine failures, or employee sick days affect the Production Planning and Control (PPC) activities of industrial companies. Trends like globalization and increased market pressure intensify these problems. To master the complexity of decision-making in production control, tools of the digital factory (e.g. simulation systems) or IT systems (e.g. Manufacturing Execution Systems (MES)) are applied in manufacturing. Combining these areas would enable real-time capable data exchange which, in turn, provides real-time capable decision support. This article presents an approach for solving this problem.


2021 ◽  
Vol 6 (2) ◽  
pp. 019-027
Author(s):  
Afriansyah Afriansyah ◽  
Amrifan Saladin Mohruni

Manufacturing can be defined as applying physical and/or chemical processes to modify the structure, properties, and appearance of a given starting material to produce parts or products. Manufacturing often entails combining multiple elements for the creation of assembled products. This study aimed to establish a general understanding of development production planning and control and typical products such as just in time and lean production. Method of this study through literature review. This study described activities related to production planning and production control, the difference between lean production and traditional production (push system), and the structure of lean production as known as Toyota system manufacturing.


2020 ◽  
Vol 110 (04) ◽  
pp. 220-225
Author(s):  
Matthias Schmidt ◽  
Janine Tatjana Maier ◽  
Mark Grothkopp

Produzierende Unternehmen stehen in einem dynamischen Umfeld vor der Herausforderung eine zunehmende Datenmenge effizienter zu verarbeiten. In diesem Zusammenhang werden häufig Ansätze des maschinellen Lernens (ML) diskutiert. Der Beitrag stellt eine umfassende Aufarbeitung des Stands der Forschung bezogen auf den Einsatz von ML-Ansätzen in der Produktionsplanung und -steuerung (PPS) bereit. Daraus lässt sich der Forschungsbedarf in den einzelnen Aufgabengebieten der PPS ableiten.   In a dynamic environment, manufacturing companies face the challenge of processing an increasing amount of data more efficiently. In this context, approaches of machine learning (ML) are often discussed. This paper provides a comprehensive review of the state of the art regarding the use of ML approaches in production planning and control (PPC). Based on this, the need for research in the individual task areas of PPC can be derived.


2021 ◽  
Vol 27 (2) ◽  
pp. 100-107
Author(s):  
Radosław Wolniak

Abstract The theoretical aim of the paper is to analyses the main function and concept of production control in operation management. The empirical aim of the paper is to investigate polish production firm opinion about factors affecting production planning and control and also functions of production planning and control. Production control is very important in every factory, and every aspect of operation and production management especially in times of Industry 4.0 conditions. In the paper we presented all classical seven task of production management control. Also there is in the paper an analysis of main factors affecting production control in industrial organization. In the paper we analysed the problems connected with production control. Nowadays in the conditions of Industry 4.0 this is very important concept because the increasing level of digitalization of all industrial processes leads to possibility of detailed analysis of all processes and better level of control. Operation managers should have good level of knowledge about production control and especially quality control. They can use in this many new information tools like statistical methods and artificial intelligence. Especially we think that in the future many function of production control would be assisted by artificial intelligence. We also in the paper give results of research conducted on example of 30 polish production organizations located in Silesia region.


2017 ◽  
Vol 107 (03) ◽  
pp. 148-153
Author(s):  
M. Rösch ◽  
C. Schultz ◽  
S. Braunreuther ◽  
G. Prof. Reinhart

Mit der Umstrukturierung des Stromnetzes im Zuge der Energiewende sind die Strompreise für Industriekunden zuletzt deutlich gestiegen. Gleichzeitig ist eine Kostendegression für Kleinkraftwerke sowie Stromspeicher zu beobachten, die zu einer wachsenden Attraktivität von Stromeigenversorgungen führt. Der Fachbeitrag beleuchtet das Umdenken, das dabei für Produktionsstandorte bei der Energieversorgung und der informationstechnischen Vernetzung aller Erzeuger und Verbraucher erforderlich ist.   Due to the steady increase of renewable and volatile energy sources, industrial customers are faced with rising prices for electricity. At the same time, falling costs for energy storage systems and small power stations, especially photovoltaic, make customer generation and internal consumption more attractive. This paper highlights the changes thus necessary for manufacturing companies with regard to the energy supply and the integration of generators and consumers.


CYCLOTRON ◽  
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mochammad Rizaldi Putramawan

Abstrak— Banyaknya usaha membuat tiap - tiap orang bersaing menjadi yang terbaik untuk mendapatkan konsumen. Ketika pemilik usaha tidak dapat memanfaatkan teknologi infomasi, maka banyak informasi yang terbuang percuma. Bentuk laporan yang masih manual membuat pemilik menjadi kesulitan dalam melihat perkembangan usaha, akibatnya pemilik dapat melakukan kesalahan dalam pengambilan keputusan terutama untuk penambahan atau pengurangan stok barang.Sedangkan, tiap perusahaan baik barang ataupun jasa menghendaki peningkatan profit di setiap bulannya, sehingga perusahaan ini memerlukan suatu aplikasi untuk membantu menentukan prediksi penjualan. Dengan demikian, dibutuhkan suatu aplikasi untuk peramalan yang sangat penting digunakan untuk mengelola semua perencanaan di dalam perusahaannya.Oleh karena itu, Manajemen perlu membuat peramalan permintaan produk secara tepat agar tidak terjadi kelebihan atau kekurangan produksi. Teknik analisis data menggunakan metode rata–rata bergerak (moving average) yang paling berdaya guna sebagai pendukung perencanaan dan pengendalian produksi sehingga bisa memaksimalkan manajemen rantai pasokan produk. Kata kunci: Sistem Peramalan, Moving Average Abstract— The number of businesses makes everyone competes to be the best to get consumers. When a business owner can not take advantage of information technology, a lot of information is wasted. The form of reports that are still manual makes the owner becomes difficult in seeing the development of the business, consequently the owner can make mistakes in making decisions, especially for the addition or reduction of inventory.Meanwhile, each company whether goods or services require increased profits in each month, so this company needs an application to help determine sales predictions. Thus, an application is required for very important forecasting used to manage all the planning within the company.Therefore, Management needs to make accurate product demand forecasting to avoid excess or lack of production. Data analysis techniques use the most effective moving average method as a supporter of production planning and control so as to maximize supply chain management.Keywords: Forecasting System, Moving Average


MENDEL ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. 1-8
Author(s):  
Terje Bach ◽  
Bjørn Jæger ◽  
Arild Hoff

In this paper, we explore the use of network routing for production planning and control in manufacturing of complex industrial products. Such a product is the result of a joint effort of many manufacturing companies; each considered a collection of work centre nodes connected by transportation links forming a company-wide manufacturing network. Each company is, in turn considered a manufacturing node connected to other manufacturers by transportation links forming a distributed manufacturing network that produces the final product. We model the manufacturing network as a distribution network where the incoming and outgoing inventories of products are distinct nodes in addition to the work centre nodes. Production planning and control are done by minimizing the cost of handling all products in all work centre nodes. This formulation provides a scalable and flexible production planning and control scheme adhering to the networked structure of manufacturing of complex products. We apply the model to a company-wide manufacturing network as a first approach. A case study using the model demonstrates production planning using network routing at a manufacturer of ship propulsion engines.


Sign in / Sign up

Export Citation Format

Share Document