Substrate Positioning Error Analysis and Compensation Method in Holographic Grating Fabrication

2015 ◽  
Vol 35 (s1) ◽  
pp. s105001
Author(s):  
董宁宁 Dong Ningning ◽  
崔锦江 Cui Jinjiang ◽  
徐建根 Xu Jiangen ◽  
许杰 Xu Jie
Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2428 ◽  
Author(s):  
Qian Deng ◽  
Shuliang Zou ◽  
Hongbin Chen ◽  
Weixiong Duan

Attachment changing in demolition robots has a high docking accuracy requirement, so it is hard for operators to control this process remotely through the perspective of a camera. To solve this problem, this study investigated positioning error and proposed a method of error compensation to achieve a highly precise attachment changing process. This study established a link parameter model for the demolition robot, measured the error in the attachment changing, introduced a reference coordinate system to solve the coordinate transformation from the dock spot of the robot’s quick-hitch equipment to the dock spot of the attachment, and realized error compensation. Through calculation and experimentation, it was shown that the error compensation method proposed in this study reduced the level of error in attachment changing from the centimeter to millimeter scale, thereby meeting the accuracy requirements for attachment changing. This method can be applied to the remote-controlled attachment changing process of demolition robots, which provides the basis for the subsequent automatic changing of attachments. This has the potential to be applied in nuclear facility decommissioning and dismantling, as well as other radioactive environments.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 294
Author(s):  
Bo Shi ◽  
Fan Zhang ◽  
Fanlin Yang ◽  
Yanquan Lyu ◽  
Shun Zhang ◽  
...  

Global navigation satellite system (GNSS)/inertial navigation system (INS) navigation technology is one of the core technologies in a mobile measurement system and can provide real-time geo-referenced information. However, in the environment measurements, buildings cover up the GNSS signal, causing satellite signals to experience loss-of-lock. At this time errors of INS independent navigation accumulate rapidly, so it cannot meet the needs of the mobile measurement system. In this paper, a positioning error compensation method based on plane control is proposed by analyzing the error characteristics of position and orientation caused by satellite signal loss-of-lock in the urban environment. This method control uses planar features and the laser point cloud positioning equation to establish an adjustment model that ignores the influence of the attitude error and finds the positioning error at the middle point of the GNSS signal loss-of-lock time period, and then compensates for the error at other points by using the characteristics of the positioning error. The experimental results show that the accuracy of the compensated laser point cloud has been significantly improved, and the feasibility of the method is verified. Meanwhile, the method can rely on the existing building plane so the method is adaptable and easy to implement.


2008 ◽  
Vol 26 (1) ◽  
pp. 10
Author(s):  
Yasuhiro Hidaka ◽  
Kiyoshi Uchikawa ◽  
Daniel G. Smith

2013 ◽  
Vol 712-715 ◽  
pp. 1571-1575
Author(s):  
Feng Yang ◽  
Qia Heng Tang ◽  
Yin Biao Guo

In this paper, a thermal error analysis and compensation method for a high precision aspheric measuring platform driven by a linear motor system is presented. After analyzing the heat source of thermal deformation, the thermal deformation of guide is selected to be object, and the thermal analysis method of guide in heat balance state is proposed. According to the motor temperature at different positions, the thermal error curve of guide is obtained through simulation. Modeling the global positioning error of measuring platform and the compensation model of thermal error using polynomial fitting, the thermal error compensation experiments is implemented by applying compensation system of measuring platform's controller. The experimental results show that the maximum positioning error in heat balance state is reduced from 1.5μm to 0.7μm, which verify the validity of thermal error compensation model.


Author(s):  
Sukwon Jang ◽  
Taegyoo Lee ◽  
Jinseung Lee

2021 ◽  
Vol 29 (4) ◽  
pp. 793-801
Author(s):  
Cong-bin YANG ◽  
◽  
Qing-xu GUO ◽  
Zhi-feng LIU ◽  
Tao ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document