Object Tracking in 3-D Space with Passive Acoustic Sensors using Particle Filter

Author(s):  
Jinseok Lee
Author(s):  
Marjan Firouznia ◽  
Karim Faez ◽  
Hamidreza Amindavar ◽  
Javad Alikhani Koupaei

Author(s):  
Indah Agustien Siradjuddin ◽  
◽  
Muhammad Rahmat Widyanto ◽  

To track vehicle motion in data video, particle filter with Gaussian weighting is proposed. This method consists of four main stages. First, particles are generated to predict target’s location. Second, certain particles are searched and these particles are used to build Gaussian distribution. Third, weight of all particles is calculated based on Gaussian distribution. Fourth, particles are updated based on each weight. The proposed method could reduce computational time of tracking compared to that of conventional method of particle filter, since the proposed method does not have to calculate all particles weight using likelihood function. This method has been tested on video data with car as a target object. In average, this proposed method of particle filter is 60.61% times faster than particle filter method meanwhile the accuracy of tracking with this newmethod is comparable with particle filter method, which reach up to 86.87%. Hence this method is promising for real time object tracking application.


Author(s):  
Norikazu Ikoma ◽  
◽  
Akihiro Asahara ◽  

Real time visual tracking by particle filter has been implemented on Cell Broadband Engine in parallel. Major problem for the implementation is small size of Local Store (LS) in SPEs (Synergistic PEs), which are computational cores, to deal with image of large size. As a first step for the implementation, we focus on color single object tracking, which is one of the most simple case of visual tracking. By elaborating to compress the color extracted image into bit-wise representation of binary image, all information of the color extracted image can be stored in LS for 640×480 size of original image. By applying our previous implementation of general particle filter algorithm on Cell/B.E. to this specific case, we have achieved real time performance of visual tracking on PlayStation®3 about 7 fps with a camera of maximum 15 fps.


Sign in / Sign up

Export Citation Format

Share Document