Challenges for Risk on Future Autonomous Offshore Installations

Author(s):  
Jan Erik Vinnem ◽  
Silje F. Budde
Author(s):  
Constantinos Yiallourides ◽  
Greg W Gordon

Author(s):  
Sirous F. Yasseri ◽  
Jake Prager

This paper describes a recurrence law for explosions. The proposed recurrence law fits quite well to the historic explosion data in residential buildings as well as to the data on offshore installations in the North Sea. Generally quantified explosion risk assessment is performed for offshore installations, since it is believed historic data does not correspond to a specific installation and it may not be appropriate for use in performance based explosion engineering, which may in itself require realistic load description of explosion recurrence. The goodness-of-fit of the model for explosion occurrence data obtained using the quantified risk assessment method is also discussed. The paper then introduces the concept of performance-based design, which is an attempt to design structures with predictable performance under explosion loading. Performance objectives such as life safety, collapse prevention, or immediate resumption of operation are used to define the state of an installation following a design explosion. The recurrence law is then used to associate a level of explosion load to each limit state using a desirable level of probability of exceedance during the installations life time.


Author(s):  
Shane Siebenaler ◽  
Eric Tervo ◽  
Mohan Kulkarni ◽  
Sandeep Patni ◽  
Glenn Gesoff

Reliable detection of small potential leaks is a topic of significant interest for remote offshore pipelines. Potential leak cases of interest are pinhole leaks out of the bottom of the pipe due to corrosion, weld or seam cracks, or damage due to third-party contact. There are several emerging technologies that may have the potential to provide a means of detecting such leaks over long segments of underwater pipe. These technologies include distributed acoustic and distributed temperature sensing. A key element of evaluating the applicability of these systems is to characterize the behavior of leaks. It is critically important to understand how leaks behave when employing a technology that has only been previously used for other conditions. A joint-industry program was initiated to evaluate the thermal and acoustic behavior of hypothetical underwater leaks. The environments studied range from shallow, Arctic applications to deep offshore installations. Analytical models were assessed to predict the jetting behavior of simulated leaks and their near-field thermal response. This analysis was performed for both liquid and gas media. These models were validated by means of laboratory experiments. Acoustic characteristics of hypothetical liquid and gas leaks were determined by means of testing with hydrophones. This information can be leveraged by a number of technologies as the data are independent of the measurement mechanism. While the motivation of this work is to evaluate distributed fiber-optic systems, the data on leak characteristics may also provide indications on applicability of other techniques for detecting potential underwater leaks. The data from this project will allow the industry to improve the understanding of potential leaks from underwater pipelines and, hence, lay the foundation for determining appropriate detection systems.


Author(s):  
John V. Sharp ◽  
Edmund G. Terry ◽  
John Wintle

Many offshore installations in the North Sea have now exceeded their original design life and are in a life extension phase. A Framework of six processes has been developed for the management of ageing of Safety Critical Elements (SCEs) in offshore installations. The processes include an analysis of the effect of ageing modes on SCE performance. Examples of performance indicators for typical SCEs are proposed based on how their condition and performance as may be affected by physical deterioration and other effects of ageing. Indicators for calibrating the maturity and effectiveness of the management processes are also suggested.


Sign in / Sign up

Export Citation Format

Share Document