Effects of parasites and predators on nociception: decreases analgesia reduces overwinter survival in root voles (Rodentia: Cricetidae)
Growing evidence suggests that parasite-infected prey is more vulnerable to predation. However, the mechanism underlying this phenomenon is obscure. In small mammals, analgesia induced by environmental stressors is a fundamental component of the defensive repertoire, promoting defensive responses. Thus, the reduced analgesia may impair the defensive ability of prey and increase their predation risk. This study aimed to determine whether coccidia infection increases the vulnerability to predation in root voles, Microtus oeconomus (Pallas, 1776), by decreased analgesia. Herein, a predator stimulus and parasitic infection were simulated in the laboratory via a two-level factorial experiment, then, the vole nociceptive responses to an aversive thermal stimulus were evaluated. Further, a field experiment was performed to determine the overwinter survival of voles with different nociceptive responses via repeated live trapping. The coccidia-infected voles demonstrated reduced predator-induced analgesia following exposure to predator odor. Meanwhile, pain-sensitive voles had lower overwinter survival than pain-inhibited voles in enclosed populations throughout the duration of the experiment. Our findings suggest that coccidia infection attenuates predator-induced analgesia, resulting in an increased vulnerability to predation.