The aim of this study was to analyse the effects of manipulating the size and contour of the visual field on the accuracy of an aiming task. Subjects were required to perform pointing movements without seeing their moving hand. The target was displayed in either a wide structured visual field (control condition), a narrow visual field with orthogonal frame, or a narrow visual field with circular frame. The visual information surrounding the target was always provided prior to movement onset, but during the execution of the movement on only half of the trials. Overall, the results showed that undershooting was a common performance characteristic in all of the conditions. In comparison to the control performance, an increase of the degree of undershoot was found when the target was displayed inside a narrower visual field. An additional radial error was found when the contour of the visual scene was circular, but only when the visual context was available during the movement. The same pattern of results was observed for variable error. However, angular errors were not found to vary over the different conditions. Overall, the findings suggested that the visual context contributed to the assessment of the target locations, and the subsequent motor programming. Furthermore, visual information aided the on-line control of the unseen hand, but the extent of this was dependent on the size and shape of the frame denoting the visual scene. Finally, in the absence of any unexpected perturbation, the en-route amendment of the arm trajectory, based on visual information processing, seemed to be more related to distance than azimuth control.