Mice co-administrated with partially hydrolysed whey proteins and prebiotic fibre mixtures show allergen-specific tolerance and a modulated gut microbiota

2019 ◽  
Vol 10 (2) ◽  
pp. 165-178 ◽  
Author(s):  
L. Kleinjans ◽  
D.H. Veening-Griffioen ◽  
T. Wehkamp ◽  
J. van Bergenhenegouwen ◽  
J. Knol ◽  
...  

Non-breastfed infants at-risk of allergy are recommended to use a hydrolysed formula before the age of 6 months. The addition of prebiotics to this formula may reduce the allergy development in these infants, but clinical evidence is still inconclusive. This study evaluates (1) whether the exposure duration to different prebiotics alongside a partially hydrolysed whey protein (pHP) influences its’ effectiveness to prevent allergy development and (2) whether the gut microbiota plays a role in this process. Mice orally sensitised with whey and/or cholera toxin were orally treated for six days before sensitization with phosphate buffered saline, whey or pHP to potentially induce tolerance. Two groups received an oligosaccharide diet only from day -7 until -2 (GFshort and GFAshort) whereas two other groups received their diets from day -15 until 37 (GFlong and GFAlong). On day 35, mice underwent an intradermal whey challenge, and the acute allergic skin response, shock score, and body temperatures were measured. At day 37, mice received whey orally and serum mouse mast cell protease-1, SLPI and whey-specific antibodies were assessed. Faecal samples were taken at day -15, -8 and 34. Feeding mice pHP alone during tolerance induction did not reduce ear swelling. The tolerance inducing mechanisms seem to vary according to the oligosaccharide-composition. GFshort, GFlong, and GFAlong reduced the allergic skin response, whereas GFAshort was not potent enough. However, in the treatment groups, the dominant Lactobacillus species decreased, being replaced by Bacteroidales family S24-7 members. In addition, the relative abundance of Prevotella was significantly higher in the GFlong, GFAshort and GFAlong groups. Co-administration of oligosaccharides and pHP can induce immunological tolerance in mice, although tolerance induction was strongest in the animals that were fed oligosaccharides during the entire protocol. Some microbial changes coincided with tolerance induction, however, a specific mechanism could not be determined based on these data.

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Lukman Azis ◽  
◽  
Santad Wichienchot ◽  
Siwaporn Pinkaew ◽  
◽  
...  

Introduction: Foods and nutrients are essential not only for human health, but also for the balance of gut microbiota. This research aimed to correlate the gut microbiota of lactating women with their food/ nutrient intakes, as well as with their infants’ gut microbiota. Methods: A cross-sectional study was conducted in 27 pairs of mothers and their exclusively breastfed infants. For lactating women, the dietary assessment was conducted by 24-hour recall, and food groups were assessed following the Food and Agriculture Organization’s guidelines, while nutrient intake was analysed using INMUNCAL V3 programme. Gut microbiota of mothers and infants were measured in stool samples using fluorescent in situ hybridisation technique. Results: It was found that energy intake of mothers was only 66% of the recommended Thai Dietary Reference Intakes (DRIs). Most micronutrient and dietary fibre intakes were below the Thai DRIs. Vitamin A (VA)-rich fruits and vegetables food group correlated positively with Lactobacillus species (spp). The association between gut microbiota and nutrient intake of lactating women showed that total protein, phosphorus, and VA were positively correlated with Bifidobacterium spp.; while β-carotene and vitamin C were also positively correlated with Lactobacillus spp. In contrast, consumption of eggs and calcium correlated negatively with Clostridium spp./ Enterobacter spp. Bifidobacterium spp. and Lactobacillus spp. of lactating women and breastfed infants showed strong correlations. Conclusion: Food and nutrient intakes of lactating women were correlated with their Clostridium spp./Enterobacter spp., Bifidobacterium spp. and Lactobacillus spp. Furthermore, Bifidobacterium spp. and Lactobacillus spp. of mothers and breastfed infants showed strong correlations.


2015 ◽  
Vol 114 (4) ◽  
pp. 577-585 ◽  
Author(s):  
Lieke W. J. van den Elsen ◽  
Betty C. A. M. van Esch ◽  
Gemma M. Dingjan ◽  
Gerard A. Hofman ◽  
Johan Garssen ◽  
...  

Increased intake of vegetable oils rich in n-6 PUFA, including soyabean oil, has been associated with an increase in allergic disease. The present study aimed to determine the effect of an increasing dose of dietary vegetable oil on allergic outcomes in mice. To study this, mice received a 7 v. 10 % soyabean oil diet before and during oral sensitisation with whey or whey hyperimmune serum transfer. Another group of mice received partial whey hydrolysate (pWH) while being fed the diets before oral sensitisation. The acute allergic skin response, serum Ig level, mouse mast cell protease-1 (mMCP-1) concentration and/or splenic T-cell percentages were determined upon whey challenge. When the diets were provided before and during oral sensitisation, the acute allergic skin response was increased in mice fed the 10 % soyabean oil diet compared with the 7 % soyabean oil diet. Whey IgE and IgG1 levels remained unaltered, whereas mMCP-1 levels increased in mice fed the 10 % soyabean oil diet. Furthermore, allergic symptoms were increased in naive mice fed the 10 % soyabean oil diet and sensitised with whey hyperimmune serum. In addition to enhancing the mast cell response, the 10 % soyabean oil diet increased the percentage of activated Th1 and Th2 cells as well as increased the ratios of Th2:regulatory T cells and Th2:Th1 when compared with the 7 % soyabean oil diet. Oral tolerance induction by pWH was abrogated in mice fed the 10 % soyabean oil diet compared with those fed the 7 % soyabean oil diet during pretreatment with pWH. In conclusion, increased intake of soyabean oil rich in n-6 PUFA suppresses tolerance induction by pWH and enhances the severity of the allergic effector response in whey-allergic mice. Dietary vegetable oils rich in n-6 PUFA may enhance the susceptibility to develop or sustain food allergy.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cong Wang ◽  
Qing Liu ◽  
Fengchun Ye ◽  
Hongbo Tang ◽  
Yanpeng Xiong ◽  
...  

AbstractPurslane is a widespread wild vegetable with both medicinal and edible properties. It is highly appreciated for its high nutritional value and is also considered as a high-quality feed resource for livestock and poultry. In this study, Sanhuang broilers were used to investigate the effect of feeding purslane diets on the growth performance in broilers and their gut microbiota. A total of 48 birds with good growth and uniform weight were selected and randomly allocated to four treatment groups A (control), B, C and D. Dietary treatments were fed with basal diet without purslane and diets containing 1%, 2% and 3% purslane. The 16S rDNA was amplified by PCR and sequenced using the Illumina HiSeq platform to analyze the composition and diversity of gut microbiota in the four sets of samples. The results showed that dietary inclusion of 2% and 3% purslane could significantly improve the growth performance and reduce the feed conversion ratio. Microbial diversity analysis indicated that the composition of gut microbiota of Sanhuang broilers mainly included Gallibacterium, Bacteroides and Escherichia-Shigella, etc. As the content of purslane was increased, the abundance of Lactobacillus increased significantly, and Escherichia-Shigella decreased. LEfSe analysis revealed that Bacteroides_caecigallinarum, Lachnospiraceae, Lactobacillales and Firmicutes had significant differences compared with the control group. PICRUSt analysis revealed bacteria mainly enriched in carbohydrate metabolism pathway due to the additon of purslane in the diet. These results suggest that the addition of purslane to feed could increase the abundance of Lactobacillus in intestine, modulate the environment of gut microbiota and promote the metabolism of carbohydrates to improve its growth performance. This study indicates that the effect of purslane on the growth-promoting performance of broilers might depend on its modulation on gut microbiota, so as to provide a certain scientific basis for the application of purslane in the feed industry.


1967 ◽  
Vol 125 (5) ◽  
pp. 833-845 ◽  
Author(s):  
Alan C. Aisenberg

Complete immunological tolerance to sheep cells can be induced in mice when cyclophosphamide is injected together with sheep cells or up to 72 hr before or 48 hr after the antigen. As is true for radiation-induced immune suppression, the drug is most effective when given in the 24 hr prior to antigen. Complete cyclophosphamide-induced immunological suppression requires large doses of sheep cells (6.2 x 109 cells), presumably to enable antigen to reach sequestered receptor sites. The cyclophosphamide tolerance system has been analyzed with the Jerne technique to determine plaque-forming cells and with isotopic methods to measure rates of nucleic acid synthesis. This drug suppression has been found to consist of two components. The first is nonspecific injury to the lymphoid system caused by the cytotoxic drug and is related to the proportion of spleen cells killed. The second is antigen-specific immunological tolerance and appears to correlate with profound depression of deoxyribonucleic acid synthesis in the surviving cells. This tolerance is thought to be most consistent with a mechanism in which antigenic stimulation in the presence of cyclophosphamide-inhibited DNA synthesis and mitosis leads to the elimination or death of the specific immunological clone. Tolerance induction with cyclophosphamide is associated with loss of the 19S hemolysin plaques which are seen in nonstimulated mouse spleen, implicating these cells in immune responsiveness. The ability to induce tolerance is lost on the 3rd postantigen day at the end of a 24-hr period in which 19S cells have increased 8-fold and 7S cells 200-fold. The data suggest that loss of sensitivity is due to the emergence on day 3 of drug-resistant plaque-forming cells, particularly those of the 19S variety. In the succeeding days after antigen injection there is a progressive increase in the resistance of plaque-forming cells to cyclophosphamide administration.


Author(s):  
Lukman Azis ◽  
◽  
Siwaporn Pinkaew ◽  
Santad Wichienchot ◽  
◽  
...  

Abstract The optimal vitamin A (VA) status of lactating women is important for mothers and their breastfed infants, especially in protecting against infectious diseases. Vitamin A fortified rice is one of the food-base intervention strategy which has the potential to improve VA status. Vitamin A and gut microbiota are interrelated in their effect on human health and immunity however no specific relationship has been proved in these groups of population. This study aimed to determine the effect of VA fortified rice on the gut microbiota changes of lactating woman-exclusively breastfed infant pairs. A double-blind, randomized controlled trial (RCT) of VA fortified rice was conducted in 70 lactating women-infants pairs for 14 weeks. Gut microbiota was measured using the fluorescent in situ hybridization (FISH) and next generation sequencing (NGS) technique. Based on the FISH technique, the numbers of Clostridium spp. /Enterobacter spp. were significantly lower (P < 0.05) in mothers fed VA-fortified rice at the end of the study. In contrast, the abundance of Bifidobacterium spp. and Lactobacillus spp. of infants whose mothers fed with VA-fortified rice was significantly higher (P < 0.05) than the control group. The NGS technique confirmed that results with the increasing of Lactobacillus, B. longum and B. Choerinum in the infant of intervention group. In conclusion, VA-fortified rice was efficacious in decreasing Clostridium spp. /Enterobacter spp. in lactating women and raising the number of Bifidobacterium spp. and Lactobacillus spp. in their breastfed infants. Keywords: Breastfeeding, Gut microbiota, Lactating woman-infant pairs, Randomized controlled trial, Vitamin A


2020 ◽  
Vol 6 (10) ◽  
pp. 206-233
Author(s):  
S. Bulgakova ◽  
N. Romanchuk

The availability of innovative technologies, such as next-generation sequencing and correlated bioinformatics tools, allows deeper investigation of the cross-network relationships between the microbiota and human immune responses. Immune homeostasis is the balance between immunological tolerance and inflammatory immune responses — a key feature in the outcome of health or disease. A healthy microbiota is the qualitative and quantitative ratio of diverse microbes of individual organs and systems, maintaining the biochemical, metabolic and immune equilibrium of the macroorganism necessary to preserve human health. The studies of P. I. Romanchuk found that the microbiota is a key element potentially capable of influencing antigen functions to induce a protective immune response and the ability of the immune system to adequately respond to antigenic stimulation (vaccine efficacy) by acting as an immunological modulator as well as a natural vaccine adjuvant. The mechanisms underlying the crosstalk between the gut microbiota and the immune system play a crucial role, especially at an early age (early gut microbiota forms immunological functions). New interactions, along with other genetic and environmental factors, lead to a certain composition and richness of the microbiota, which can diversify the individual response to vaccinations. Variations in microbial communities may explain the geographical effectiveness of vaccination. Modern technologies for quantifying the specific and functional characteristics of the microbiota of the gastrointestinal tract, along with fundamental and new concepts in the field of immunology, have revealed numerous ways in which the interaction of the host and microbiota proceeds favorably, neutrally or unfavorably. The gut microbiota has a strong influence on the shape and quality of the immune system, respectively, the immune system determines the composition and localization of the microbiota. Thus, a healthy microbiota directly modulates intestinal and systemic immune homeostasis. The new managed healthy biomicrobiota and personalized functional and balanced nutrition of the “brain and microbiota” is a patient's long-term medical program that allows the combined use of nutritional epigenetics and pharmacepigenetics, and most importantly, an increase in the protective mechanisms of immunity.


2018 ◽  
Vol 22 (3) ◽  
Author(s):  
Maciej Trzaska ◽  
Marek Karwacki ◽  
Paweł Łaguna ◽  
Michał Matysiak

Eradication of factor VIII inhibitors using Immune tolerance induction (ITI) treatment is the standard of care for severe haemophilia A patients presenting with factor VIII inhibitors, but is not always effective. A description of the potential immunological tolerance effect of the IgG Fc domain of recombinant factor VIII Fc fusion protein (rFVIIIFc), as well as published experience with rFVIIIFc for ITI in patients with severe haemophilia A and high-titre inhibitors. Review of published literature describing cases of ITI with rFVIIIFc in patients with severe haemophilia A and high-titre inhibitors between November 2015 and June 2018. Four publications has been found. Of 56 patients with haemophilia A who presented with FVIII inhibitors, 28 achieved a negative Bethesda titre (< 0.6) after ITI treatment using rFVIIIFc. Additional patients continued on rFVIIIFc ITI at the time of publication, while a few were reported to have switched to bypass therapy alone or other factors . For those still undergoing ITI, longer follow-up is needed to determine final outcomes. No adverse events were reported. Based on literature review, preliminary evidence of FVIIIFc use in high risk, first-time ITI suggests rapid time to tolerization. For rescue ITI, rFVIIIFc showed therapeutic benefit in some patients who previously failed ITI. These findings give hope but highlight the need for further evaluation in ongoing clinical trials.


Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 644 ◽  
Author(s):  
Humam ◽  
Loh ◽  
Foo ◽  
Samsudin ◽  
Mustapha ◽  
...  

The effects of feeding different postbiotics on growth performance, carcass yield, intestinal morphology, gut microbiota, immune status, and growth hormone receptor (GHR) and insulin-like growth factor 1 (IGF-1) gene expression in broilers under heat stress were assessed in this study. A total of 252 one-day-old male broiler chicks (Cobb 500) were randomly assigned in cages in identical environmentally controlled chambers. During the starter period from 1 to 21 days, all the birds were fed the same basal diet. On day 22, the birds were weighed and randomly divided into six treatment groups and exposed to cyclic high temperature at 36 ± 1 °C for 3 h per day from 11:00 to 14:00 until the end of the experiment. From day 22 to 42 (finisher period), an equal number of birds were subjected to one of the following diets: NC (negative control) basal diet; PC (positive control) basal diet + 0.02% oxytetracycline; or AA (ascorbic acid) basal diet + 0.02% ascorbic acid. The other three groups (RI11, RS5 and UL4) were basal diet + 0.3% different postbiotics (produced from different Lactobacillus plantarum strains, and defined as RI11, RS5 and UL4, respectively). The results demonstrated that birds fed RI11 diets had significantly higher final body weight, total weight gain and average daily gain than the birds that received the NC, PC and AA treatments. The feed conversion ratio was significantly higher in the RI11 group compared with the other groups. Carcass parameters were not affected by the postbiotic-supplemented diet. Postbiotic supplementation improved villi height significantly in the duodenum, jejunum and ileum compared to the NC, PC and AA treatments. The crypt depth of the duodenum and ileum was significantly higher in NC group compared to other treatment groups except RI11 in duodenum, and UL4 in ileum was not different with NC groups. The villus height to crypt depth ratio of duodenum and ileum was significantly higher for the postbiotic treatment groups and AA than the PC and NC treatment groups. The postbiotic RI11 group recorded significantly higher caecum total bacteria and Lactobacillus count and lower Salmonella count compared to the NC and PC treatment groups. The Bifidobacterium population in the NC group was significantly lower compared to the other treatment groups. The postbiotic (RI11, RS5 and UL4) and AA treatment groups showed lower Enterobacteriaceae and E. coli counts and caecal pH than the NC and PC treatment groups. The plasma immunoglobulin M (IgM) level was significantly higher in the birds receiving postbiotic RI11 than those receiving other treatments. The plasma immunoglobulin G (IgG) level was higher in the RI11 treatment group than in the NC, AA and RS5 groups. The plasma immunoglobulin A (IgA) level was not affected by postbiotic supplements. The hepatic GHR mRNA expression level was significantly increased in birds fed postbiotics RI11, RS5 and UL4, AA and PC compared to the NC-fed birds. Postbiotic RI11 led to significantly higher hepatic IGF-1 mRNA expression level compared to the NC, PC, and AA treatments. Mortality was numerically lesser in the postbiotic treatment groups, but not significantly different among all the treatments. In conclusion, among the postbiotics applied in the current study as compared with NC, PC and AA, RI11 could be used as a potential alternative antibiotic growth promoter and anti-stress treatment in the poultry industry.


Author(s):  
Xiao-Ran Li ◽  
Chen-Jian Liu ◽  
Xiao-Dan Tang ◽  
He-Ming Zhang ◽  
Yi-Yong Luo ◽  
...  

The objective of this study was to evaluate the effects of a three-strain yogurt formulation in slow-transit constipation (STC) patients. Each individual in both treatment groups consumed 250 mL of the formulated yogurt daily for a week (7 days), and fecal samples were collected for gut microbiota and short-chain fatty acid (SCFA) analyses. A significant increase in the defection frequency (p<0.001) and bacterial diversity (p=0.027) at the 100% sequence homology level and a decrease in the concentrations of acetic acid (p=0.014), propionic acid (p=0.019), and butanoic acid (p=0.005) were observed after the STC patients consumed three-strain yogurt formulation. In addition, the consumption of the three-strain yogurt formulation significantly altered the composition of the intestinal bacteria in the STC patients. The relative abundances of 23 genera in the top dominating genera were altered significantly after the STC patients consumed the yogurt. In summary, the consumption of 250 mL day− the three-strain yogurt formulation described in this study can play a role in improving the symptoms of STC.


2018 ◽  
Vol 102 ◽  
pp. S261
Author(s):  
Aleksei Zulkarnaev ◽  
Andrey Vatazin ◽  
Alexander Kildushevsky ◽  
Veronika Fedulkina ◽  
Alexander Faenko

Sign in / Sign up

Export Citation Format

Share Document