Genetic Variation of Jointed Goatgrass (Aegilops cylindrica Host.) From Iran Using RAPD-PCR and SDS-PAGE of Seed Proteins

2007 ◽  
Vol 10 (17) ◽  
pp. 2868-2873 ◽  
Author(s):  
M. Farkhari ◽  
M.R. Naghavi ◽  
S.A. Pyghambari ◽  
Sabokdast .
2013 ◽  
Vol 12 (27) ◽  
pp. 4269-4276 ◽  
Author(s):  
Osman ◽  
G ◽  
Munshi ◽  
Altf A ◽  
F ◽  
...  

2008 ◽  
Vol 50 (3-4) ◽  
pp. 325-343 ◽  
Author(s):  
A. Çelebi ◽  
M. Tekşen ◽  
L. Açİk ◽  
Z. Aytaç

1987 ◽  
Vol 25 (3) ◽  
pp. 190-197
Author(s):  
KEISUKE KITAMURA

Weed Science ◽  
1984 ◽  
Vol 32 (4) ◽  
pp. 489-493 ◽  
Author(s):  
Frank L. Young ◽  
David R. Gealy ◽  
Larry A. Morrow

In the greenhouse, glyphosate [N-(phosphonomethyl)glycine] at 0.6 kg ae/ha applied directly to seeds alone or seeds on the soil surface reduced germination and shoot dry weight of common rye (Secale cerealeL. ♯3SECCE). Paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) applied similarly at 0.6 kg ai/ha reduced germination and shoot dry weight of downy brome (Bromus tectorumL. ♯ BROTE) and wheat (Triticum aestivumL. ‘Daws' ♯ TRZAX). Metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5 (4H)-one] at 0.6 kg ai/ha applied to seeds, soil, or seeds and soil had very little effect on germination, but significantly reduced shoot dry weight of common rye, downy brome, wheat, and jointed goatgrass (Aegilops cylindricaHost. ♯ AEGCY). Pronamide [3,5-dichloro(N-1,1-dimethyl-2-propynyl)benzamide] at 0.6 kg ai/ha, and propham (isopropyl carbanilate) at 3.4 kg ai/ha plus extender (p-chlorophenyl-N-methylcarbamate) at 0.4 kg ai/ha substantially reduced shoot height and dry weight of all species, regardless of application method, with pronamide completely inhibiting shoot elongation and dry-weight production in three of the four species.


Weed Science ◽  
1998 ◽  
Vol 46 (3) ◽  
pp. 313-317 ◽  
Author(s):  
R. S. Zemetra ◽  
J. Hansen ◽  
C. A. Mallory-Smith

Jointed goatgrass is a major weed in the wheat-producing areas of the western U.S. It shares the D genome with wheat, and interspecific hybrids between the two species occur in the field. The objective of this research was to determine if wheat X jointed goatgrass hybrids could serve to transfer genes from wheat to jointed goatgrass. A backcrossing program was initiated in the greenhouse between wheat X jointed goatgrass hybrids and either jointed goatgrass or wheat to determine the potential for seed set and the restoration of self-fertility. Seed was set by backcrossing with either species as the recurrent parent. Female fertility increased from 2% in the hybrid to 37% in the BC2 plants with jointed goatgrass as the recurrent parent. Partial self-fertility was restored in the second backcross (BC2) generation using jointed goatgrass as the recurrent parent. This indicates that genes could be transferred between wheat and jointed goatgrass after only two backcrosses. The number of bivalents observed in the plants during meiosis appeared to be key to increasing female fertility and self-fertility. Based on the results of this study, it is possible for genes to move from wheat to jointed goatgrass. Any release of a herbicide-resistant wheat should be accompanied by a management plan that would minimize the potential for gene movement between these species.


Genome ◽  
2000 ◽  
Vol 43 (6) ◽  
pp. 1038-1044 ◽  
Author(s):  
Z.N. Wang ◽  
A. Hang ◽  
J. Hansen ◽  
C. Burton ◽  
C.A. Mallory-Smith ◽  
...  

1999 ◽  
Vol 13 (2) ◽  
pp. 374-377 ◽  
Author(s):  
Abdel O. Mesbah ◽  
Stephen D. Miller

A 3-yr study was conducted in eastern Wyoming from 1995 to 1997 to evaluate the effect of fertilizer placement on jointed goatgrass competitiveness with winter wheat. Fertilizer placement methods consisted of applying 45 kg/ha of nitrogen (50% as urea and 50% as ammonium nitrate) in a deep band 5 cm below and 2.5 cm to the side of the wheat row, broadcasting on the soil surface, or injecting fertilizer by spoke wheel 10 cm deep and 5 cm to the side of the wheat row. Neither fertilizer placement nor jointed goatgrass presence affected winter wheat stand. Wheat yield reductions from jointed goatgrass competition were 7 and 10% higher with the broadcast than deep-band or spoke-wheel injection methods, respectively. Wheat spikes/plant, seeds/spike, 200-seed weight, and plant height were not influenced by fertilizer placement; however, the presence of 35 jointed goatgrass plants/m2reduced spikes/plant 21%, seeds/spike 12%, and 200-seed weight 6%. Jointed goatgrass populations were not influenced by fertilizer placement method; however, the number of spikes/plant was reduced 8 and 10%, joints/spike 3%, and biomass 15 and 21% by deep band or spoke wheel fertilizer placement.


Weed Science ◽  
1989 ◽  
Vol 37 (4) ◽  
pp. 562-569 ◽  
Author(s):  
David R. Gealy

Gas exchange of jointed goatgrass leaves was affected by temperature, irradiance level, and soil matric potential. Net photosynthesis of leaves under saturating irradiance (PPFD3= 1850 (μE·m–2·s−1) was optimum at about 20 C. At 25 C, net photosynthesis was nearly 90% of maximum at a PPFD of 800 μE·m–2·−1. Transpiration, and presumably water use, increased steadily with temperature from 10 to 40 C. Dark respiration rate and compensation points for light and for CO2increased exponentially, or nearly so, from 10 to 40 C. Soil moisture deficits of −130 kPa reduced net photosynthesis and transpiration by about 30 and 55%, respectively, compared to well-watered plants.


Sign in / Sign up

Export Citation Format

Share Document