scholarly journals A high order numerical method for solving Caputo nonlinear fractional ordinary differential equations

2021 ◽  
Vol 6 (12) ◽  
pp. 13187-13209
Author(s):  
Xumei Zhang ◽  
◽  
Junying Cao

<abstract><p>In this paper, we construct a high order numerical scheme for Caputo nonlinear fractional ordinary differential equations. Firstly, we use the piecewise Quadratic Lagrange interpolation method to construct a high order numerical scheme for Caputo nonlinear fractional ordinary differential equations, and then analyze the local truncation error of the high order numerical scheme. Secondly, based on the local truncation error, the convergence order of $ 3-\theta $ order is obtained. And the convergence are strictly analyzed. Finally, the numerical simulation of the high order numerical scheme is carried out. Through the calculation of typical problems, the effectiveness of the numerical algorithm and the correctness of theoretical analysis are verified.</p></abstract>

1994 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
T. Chanturia

Abstract It is shown that the differential equation u (n) = p(t)u, where n ≥ 2 and p : [a, b] → ℝ is a summable function, is not conjugate in the segment [a, b], if for some l ∈ {1, . . . , n – 1}, α ∈]a, b[ and β ∈]α, b[ the inequalities hold.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1571
Author(s):  
Francisco J. Fernández ◽  
F. Adrián F. Tojo

This work is devoted to the obtaining of a new numerical scheme based on quadrature formulae for the Lebesgue–Stieltjes integral for the approximation of Stieltjes ordinary differential equations. This novel method allows us to numerically approximate models based on Stieltjes ordinary differential equations for which no explicit solution is known. We prove several theoretical results related to the consistency, convergence, and stability of the numerical method. We also obtain the explicit solution of the Stieltjes linear ordinary differential equation and use it to validate the numerical method. Finally, we present some numerical results that we have obtained for a realistic population model based on a Stieltjes differential equation and a system of Stieltjes differential equations with several derivators.


Sign in / Sign up

Export Citation Format

Share Document