scholarly journals Robust inference in deconvolution

2021 ◽  
Vol 12 (1) ◽  
pp. 109-142
Author(s):  
Kengo Kato ◽  
Yuya Sasaki ◽  
Takuya Ura

Kotlarski's identity has been widely used in applied economic research based on repeated‐measurement or panel models with latent variables. However, how to conduct inference for these models has been an open question for two decades. This paper addresses this open problem by constructing a novel confidence band for the density function of a latent variable in repeated measurement error model. The confidence band builds on our finding that we can rewrite Kotlarski's identity as a system of linear moment restrictions. Our approach is robust in that we do not require the completeness. The confidence band controls the asymptotic size uniformly over a class of data generating processes, and it is consistent against all fixed alternatives. Simulation studies support our theoretical results.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhao Zhiwen ◽  
He Jinghua

In this paper, we consider the parameter estimation problem of linear regression model when the auxiliary information can be denoted by moment restrictions. We use the weighted least squares method to estimate the model parameters and to obtain the weights based on the auxiliary information by using the empirical likelihood method. The limiting distribution of the estimator is established, and the simulation studies are carried out to demonstrate the feasibility of our theoretical results.


Methodology ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. 77-87 ◽  
Author(s):  
Zhehan Jiang ◽  
Kevin Walker ◽  
Dexin Shi

Abstract. Cognitive diagnostic modeling has been adopted to support various diagnostic measuring processes. Specifically, this approach allows practitioners and/or researchers to investigate an individual’s status with regard to certain latent variables of interest. However, the diagnostic information provided by traditional estimation approaches often suffers from low accuracy, especially under small sample conditions. This paper adopts an AdaBoost technique, popular in the field of machine learning, to estimate latent variables. Further, the proposed approach involves the construction of a simple iterative algorithm that is based upon the AdaBoost technique – such that the area under the curve (AUC) is minimized. The algorithmic details are elaborated via pseudo codes with line-to-line verbal explanations. Simulation studies were conducted such that the improvement of latent variable estimates via the proposed approach can be examined.


Methodology ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 157-164
Author(s):  
Karl Schweizer

Probability-based and measurement-related hypotheses for confirmatory factor analysis of repeated-measures data are investigated. Such hypotheses comprise precise assumptions concerning the relationships among the true components associated with the levels of the design or the items of the measure. Measurement-related hypotheses concentrate on the assumed processes, as, for example, transformation and memory processes, and represent treatment-dependent differences in processing. In contrast, probability-based hypotheses provide the opportunity to consider probabilities as outcome predictions that summarize the effects of various influences. The prediction of performance guided by inexact cues serves as an example. In the empirical part of this paper probability-based and measurement-related hypotheses are applied to working-memory data. Latent variables according to both hypotheses contribute to a good model fit. The best model fit is achieved for the model including latent variables that represented serial cognitive processing and performance according to inexact cues in combination with a latent variable for subsidiary processes.


2019 ◽  
Author(s):  
Kevin Constante ◽  
Edward Huntley ◽  
Emma Schillinger ◽  
Christine Wagner ◽  
Daniel Keating

Background: Although family behaviors are known to be important for buffering youth against substance use, research in this area often evaluates a particular type of family interaction and how it shapes adolescents’ behaviors, when it is likely that youth experience the co-occurrence of multiple types of family behaviors that may be protective. Methods: The current study (N = 1716, 10th and 12th graders, 55% female) examined associations between protective family context, a latent variable comprised of five different measures of family behaviors, and past 12 months substance use: alcohol, cigarettes, marijuana, and e-cigarettes. Results: A multi-group measurement invariance assessment supported protective family context as a coherent latent construct with partial (metric) measurement invariance among Black, Latinx, and White youth. A multi-group path model indicated that protective family context was significantly associated with less substance use for all youth, but of varying magnitudes across ethnic-racial groups. Conclusion: These results emphasize the importance of evaluating psychometric properties of family-relevant latent variables on the basis of group membership in order to draw appropriate inferences on how such family variables relate to substance use among diverse samples.


2021 ◽  
Vol 13 (2) ◽  
pp. 51
Author(s):  
Lili Sun ◽  
Xueyan Liu ◽  
Min Zhao ◽  
Bo Yang

Variational graph autoencoder, which can encode structural information and attribute information in the graph into low-dimensional representations, has become a powerful method for studying graph-structured data. However, most existing methods based on variational (graph) autoencoder assume that the prior of latent variables obeys the standard normal distribution which encourages all nodes to gather around 0. That leads to the inability to fully utilize the latent space. Therefore, it becomes a challenge on how to choose a suitable prior without incorporating additional expert knowledge. Given this, we propose a novel noninformative prior-based interpretable variational graph autoencoder (NPIVGAE). Specifically, we exploit the noninformative prior as the prior distribution of latent variables. This prior enables the posterior distribution parameters to be almost learned from the sample data. Furthermore, we regard each dimension of a latent variable as the probability that the node belongs to each block, thereby improving the interpretability of the model. The correlation within and between blocks is described by a block–block correlation matrix. We compare our model with state-of-the-art methods on three real datasets, verifying its effectiveness and superiority.


1989 ◽  
Vol 14 (4) ◽  
pp. 335-350 ◽  
Author(s):  
Robert J. Mislevy ◽  
Kathleen M. Sheehan

The Fisher, or expected, information matrix for the parameters in a latent-variable model is bounded from above by the information that would be obtained if the values of the latent variables could also be observed. The difference between this upper bound and the information in the observed data is the “missing information.” This paper explicates the structure of the expected information matrix and related information matrices, and characterizes the degree to which missing information can be recovered by exploiting collateral variables for respondents. The results are illustrated in the context of item response theory models, and practical implications are discussed.


2019 ◽  
Vol 7 (1) ◽  
pp. 1-13
Author(s):  
Aras Jalal Mhamad ◽  
Renas Abubaker Ahmed

       Based on medical exchange and medical information processing theories with statistical tools, our study proposes and tests a research model that investigates main factors behind abortion issue. Data were collected from the survey of Maternity hospital in Sulaimani, Kurdistan-Iraq. Structural Equation Modelling (SEM) is a powerful technique as it estimates the causal relationship between more than one dependent variable and many independent variables, which is ability to incorporate quantitative and qualitative data, and it shows how all latent variables are related to each other. The dependent latent variable in SEM which have one-way arrows pointing to them is called endogenous variable while others are exogenous variables. The structural equation modeling results reveal is underlying mechanism through which statistical tools, as relationship between factors; previous disease information, food and drug information, patient address, mother’s information, abortion information, which are caused abortion problem. Simply stated, the empirical data support the study hypothesis and the research model we have proposed is viable. The data of the study were obtained from a survey of Maternity hospital in Sulaimani, Kurdistan-Iraq, which is in close contact with patients for long periods, and it is number one area for pregnant women to obtain information about the abortion issue. The results shows arrangement about factors effectiveness as mentioned at section five of the study. This gives the conclusion that abortion problem must be more concern than the other pregnancy problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mehdi Zolali ◽  
Babak Mirbaha ◽  
Maziyar Layegh ◽  
Hamid Reza Behnood

Driving above the speed limit is one of the factors that significantly affect safety. Many studies examined the factors affecting the speed of vehicles in the simulated environment. The present study aimed to analyze drivers’ characteristics, time and weather conditions, and geometric features’ effect on mean speed in simulated conditions simultaneously. In this regard, the simulator experiment data of 70 drivers were collected in a two-lane rural highway at six different times, and weather scenarios and their socioeconomic characteristics were collected by a questionnaire. Structural equation modeling (SEM) was used to capture the complex relationships among related variables. Eleven variables were grouped into four latent variables in the structural model. Latent variables including “Novice Drivers,” “Experienced Drivers,” “Sight Distance,” and “Geometric Design” were defined and found significant on their mean speed. The results showed that “Novice Drivers” have a positive correlation with the mean speed. Meanwhile, “Experienced Drivers,” who drive 12% slower than the novice group, negatively affect the mean speed with a standard regression weight of −0.08. This relation means that young and novice drivers are more inclined to choose higher speeds. Among variables, the latent variable “Sight Distance” has the most significant effect on the mean speed. This model shows that foggy weather conditions strongly affect the speed selection behavior and reduce the mean speed by 40%. Nighttime also reduces mean speed due to poor visibility conditions. Furthermore, “Geometric design” as the latent variable indicates the presence of curves on the simulated road, and it can be concluded that the existence of a curve on the road encourages drivers to slow down, even young drivers. It is noteworthy that the parts of the simulated road with a horizontal curve act as a speed reduction tool for drivers.


Sign in / Sign up

Export Citation Format

Share Document