Investigation in Sinkhole Terrains Using Complex of Geophysical Methods – Case Study in the Karst Area, Slovakia

Author(s):  
R. Putiška ◽  
D. Kušnirák ◽  
I. Dostál ◽  
R. Pašteka ◽  
A. Mojzeš
2004 ◽  
Vol 2 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Carlos Magnavita ◽  
Norbert Schleifer

In the last decades, geophysical methods such as magnetic survey have become a common technique for prospecting archaeological sites. At sub-Saharan archaeological sites, however, magnetic survey and correlated techniques never came into broad use and there are no signs for an immediate change of this situation. This paper examines the magnetic survey undertaken on the Nigerian site of Zilum, a settlement of the Gajiganna Culture (ca 1800-400 BC) located in the Chad Basin and dated to ca 600-400 BC. By means of the present case study, we demonstrate the significance of this particular type of investigation in yielding complementary data for understanding the character of prehistoric settlements. In conclusion, we point out that geophysical methods should play a more important role in modern archaeological field research, as they furnish a class of documentation not achievable by traditional survey and excavation methods, thus creating new perspectives for interpreting the past of African societies.


2021 ◽  
Author(s):  
Enzo Rizzo ◽  
Luigi Capozzoli ◽  
Gregory De Martino ◽  
Giacomo Fornasari ◽  
Valeria Giampaolo

<p>Carbonate aquifers in karst systems are very important water reservoir and are recognized as the most difficult to characterize. The purpose of this article is to present a project aimed to understand the circulation of fluids in carbonate reservoirs through innovative hydrogeophysical methodologies both in the laboratory and in the field. The test site is located in the Castel di Lepre karst system, which is disposed in the Mezo-Cenozoic carbonate substratum of the Monti della Maddalena ridge (Southern Appenines). In the karst area are located several caves, but the presence of an artificial tunnel (disused railway tunnel) could give the opportunity to characterize the whole area and the fluid circulation by multisensors geophysical sensors installed inside the karst aquifer. This natural laboratory permits to define an Applied Geophysics strategy developing several main topics from an engineering to hydrogeological point of view. Firstly, the geophysical investigations conducted, without altering the structure and in a fast manner, obtains important information concerning the construction of the tunnel, and the interaction between the infrastructure and surrounding rock, in that area that we define infrastructural critical zone. The study conducted aims to highlight the potential and any limitations of the use of geophysical techniques applied to infrastructures, emphasizing the emerging role of urban geophysics for the importance and topicality of its contents as well as the important innovations that the use of these techniques they can contribute to the hazardous processes. Secondly, the geophysical methods are used as a tool to characterize the fluid circulation by hydrogeophysal sensors installed inside the karst aquifer. The hydrogeophysics arose as an interdisciplinary field that focuses on the improved understanding of hydrological processes through geophysical observation. These approaches aimed at mitigating the detrimental effects of environmental problems.</p>


Sign in / Sign up

Export Citation Format

Share Document