Spatiotemporal Pattern Analysis of Rapid Urban Expansion Using GIS and Remote Sensing

Author(s):  
Hyun Joong Kim

Rapidly growing urban areas tend to reveal distinctive spatial and temporal variations of land use/land cover in a locally urbanized environment. In this article, the author analyzes urban growth phenomena at a local scale by employing Geographic Information Systems, remotely sensed image data from 1984, 1994, and 2004, and landscape shape index. Since spatial patterns of land use/land cover changes in small urban areas are not fully examined by the current GIS-based modeling studies or simulation applications, the major objective of this research is to identify and examine the spatial and temporal dynamics of land use changes of urban growth at a local scale. Analytical results demonstrate that sizes, locations, and shapes of new developments are spatio-temporally associated with their landscape variations and major transportation arteries. The key findings from this study contribute to GIS-based urban growth modeling studies and urban planning practices for local communities.

2010 ◽  
Vol 1 (2) ◽  
pp. 55-70 ◽  
Author(s):  
Hyun Joong Kim

Rapidly growing urban areas tend to reveal distinctive spatial and temporal variations of land use/land cover in a locally urbanized environment. In this article, the author analyzes urban growth phenomena at a local scale by employing Geographic Information Systems, remotely sensed image data from 1984, 1994, and 2004, and landscape shape index. Since spatial patterns of land use/land cover changes in small urban areas are not fully examined by the current GIS-based modeling studies or simulation applications, the major objective of this research is to identify and examine the spatial and temporal dynamics of land use changes of urban growth at a local scale. Analytical results demonstrate that sizes, locations, and shapes of new developments are spatio-temporally associated with their landscape variations and major transportation arteries. The key findings from this study contribute to GIS-based urban growth modeling studies and urban planning practices for local communities.


Rapid growth and development of urban area is a worldwide phenomenon and it has become one of the certain issues facing by most of the urban areas in developing countries like India. The foremost reasons of this type of speedy growth are uncontrolled urbanisation coupled with accelerated population growth, massive influx of illegal immigrants and unorganized expansion of the urban areas. Accordingly, urban growth led to radical changes in land-use/ land-cover, which manifests profound impact on urban environment through the process of fast alteration of natural landscapes. In this context, the present study aims at comparing the pattern of urban growth and concerning land use and land cover change dynamics of two emerging frontier cities in India i.e., Silchar and Balurghat. For the purpose of the study, multi-temporal Landsat data have been used for analysing land use/ land cover changes in both cities for the period of 1988-2019.Hence, land use and land cover maps are prepared by applying maximum likelihood algorithm of supervised classification method with the help of ERDAS Imagine software. The accuracy assessment was also done by applying statistical method of Kappa coefficient. Further, the study reveals that both the cities have experienced with rapid rate of horizontal expansion. This has led to drastic change with sharpe conversion of vegetation and open field to built-up areas and which have caused innumerable environmental problems and hampers the sustainable growth of both two cities. Therefore, there has been dire need for proper planning to sustain balance of future urban growth and overall development of the areas


2020 ◽  
Vol 11 (2) ◽  
pp. 42-58
Author(s):  
Omar S. Belhaj ◽  
Stanley T. Mubako

Rapid and unplanned urbanization presents a formidable challenge to sustainable urban growth in most developing countries. This study applies Geographic Information System (GIS) and remote sensing tools to quantify land use and land cover change in the coastal, economically important district of Khoms, Libya. The study revealed a 16% per year long-term historic urban growth rate, leading to an urbanization increase of 658% from just 800 ha in 1976 to 6,067 ha in 2015 over the 40-year analysis period. Qualitative evaluation of satellite images showed devastating impacts on both terrestrial and marine ecosystems through broad scale clearing of forests and other native areas for agriculture and urban development, and through reclamation of the Mediterranean Sea during the construction of a naval base and port at Khoms City. An integrated approach that explores of a range of innovative approaches to address sustainable development issues faced by Khoms District and other similar fast growing but environmentally fragile developing country locations is recommended.


Urban Science ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Bright Addae ◽  
Natascha Oppelt

A rapid increase in the world’s population over the last century has triggered the transformation of the earth surface, especially in urban areas, where more than half of the global population live. Ghana is no exception and a high population growth rate, coupled with economic development over the last three decades, has transformed the Greater Accra region into a hotspot for massive urban growth. The urban extent of the region has expanded extensively, mainly at the expense of the vegetative cover in the region. Although urbanization presents several opportunities, the environmental and social problems cannot be underestimated. Therefore, the need to estimate the rate and extent of land use/land cover changes in the region and the main drivers of these changes is imperative. Geographic Information Systems (GIS) and remote sensing techniques provide effective tools in studying and monitoring land-use/land-cover change over space and time. A post classification change detection of multiple Landsat images was conducted to map and analyse the extent and rate of land use/land cover change in the region between 1991 and 2015. Subsequently, the urban extent of the region was forecasted for the year 2025 using the Markov Chain and the Multi-Layer Perceptron neural network, together with drivers representing proximity, biophysical, and socio-economic variables. The results from the research revealed that built-up areas increased by 277% over the 24-year study period. However, forest areas experienced massive reduction, diminishing from 34% in 1991 to 6.5% in 2015. The 2025 projected land use map revealed that the urban extent will massively increase to cover 70% of the study area, as compared to 44% in 2015. The urban extent is also anticipated to spill into the adjoining districts mainly on the western and eastern sides of the region. The success of this research in generating a future land-use map for 2025, together with the other significant findings, demonstrates the usefulness of spatial models as tools for sustainable city planning and environmental management, especially for urban planners in developing countries.


2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

Author(s):  
Ibrar ul Hassan Akhtar ◽  
Athar Hussain ◽  
Kashif Javed ◽  
Hammad Ghazanfar

Developing countries like Pakistan is among those where lack of adoption to science and technology advancement is a major constraint for Satellite Remote Sensing use in crops and land use land cover digital information generation. Exponential rise in country population, increased food demand, limiting natural resources coupled with migration of rural community to urban areas had further led to skewed official statistics. This study is an attempt to demonstrate the possible use of freely available satellite data like Landsat8 under complex cropping system of Okara district of Punjab, Pakistan. An Integrated approach has been developed for the satellite data based crops and land use/cover spatial area estimation. The resultant quality was found above 96% with Kappa statistics of 0.95. Land utilization statistics provided detail information about cropping patterns as well as land use land cover status. Rice was recorded as most dominating crop in term of cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato, fodder and cotton being cultivated on less than 0.010 million ha. Population settlements were observed over an area of around 0.081 million ha of land. 


2011 ◽  
Vol 50 (9) ◽  
pp. 1872-1883 ◽  
Author(s):  
Winston T. L. Chow ◽  
Bohumil M. Svoma

AbstractUrbanization affects near-surface climates by increasing city temperatures relative to rural temperatures [i.e., the urban heat island (UHI) effect]. This effect is usually measured as the relative temperature difference between urban areas and a rural location. Use of this measure is potentially problematic, however, mainly because of unclear “rural” definitions across different cities. An alternative metric is proposed—surface temperature cooling/warming rates—that directly measures how variations in land-use and land cover (LULC) affect temperatures for a specific urban area. In this study, the impact of local-scale (<1 km2), historical LULC change was examined on near-surface nocturnal meteorological station temperatures sited within metropolitan Phoenix, Arizona, for 1) urban versus rural areas, 2) areas that underwent rural-to-urban transition over a 20-yr period, and 3) different seasons. Temperature data were analyzed during ideal synoptic conditions of clear and calm weather that do not inhibit surface cooling and that also qualified with respect to measured near-surface wind impacts. Results indicated that 1) urban areas generally observed lower cooling-rate magnitudes than did rural areas, 2) urbanization significantly reduced cooling rates over time, and 3) mean cooling-rate magnitudes were typically larger in summer than in winter. Significant variations in mean nocturnal urban wind speeds were also observed over time, suggesting a possible UHI-induced circulation system that may have influenced local-scale station cooling rates.


2021 ◽  
Author(s):  
Peter Hoffmann ◽  
Diana Rechid ◽  
Vanessa Reinhart ◽  
Christina Asmus ◽  
Edouard L. Davin ◽  
...  

&lt;p&gt;Land-use and land cover (LULC) are continuously changing due to environmental changes and anthropogenic activities. Many observational and modeling studies show that LULC changes are important drivers altering land surface feedbacks and land-atmosphere exchange processes that have substantial impact on climate on the regional and local scale. Yet, most long-term regional climate modeling studies do not account for these changes. Therefore, within the WCRP CORDEX Flagship Pilot Study LUCAS (Land Use Change Across Scales) a new workflow was developed to generate high-resolution annual land cover change time series based on past reconstructions and future projections. First, the high-resolution global land cover dataset ESA-CCI LC (~300 m resolution) is aggregated and converted to a 0.1&amp;#176; resolution, fractional plant functional type (PFT) dataset. Second, the land use change information from the land-use harmonized dataset (LUH2), provided at 0.25&amp;#176; resolution as input for CMIP6 experiments, is translated into PFT changes employing a newly developed land use translator (LUT). The new LUT was first applied to the EURO-CORDEX domain. The resulting LULC maps for past and future - the LUCAS LUC dataset - can be applied as land use forcing to the next generation RCM simulations for downscaling CMIP6 by the EURO-CORDEX community and in the framework of FPS LUCAS. The dataset includes land cover and land management practices changes important for the regional and local scale such as urbanization and irrigation. The LUCAS LUC workflow is applied to further CORDEX domains, such as Australasia and North America. The resulting past and future land cover changes will be presented, and challenges regarding the application of the new workflow to different regions will be addressed. In addition, issues related to the implementation of the dataset into different RCMs will be discussed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document