Experimental Study on Boundary Constraint Handling in Particle Swarm Optimization

Author(s):  
Shi Cheng ◽  
Yuhui Shi ◽  
Quande Qin

Premature convergence happens in Particle Swarm Optimization (PSO) for solving both multimodal problems and unimodal problems. With an improper boundary constraints handling method, particles may get “stuck in” the boundary. Premature convergence means that an algorithm has lost its ability of exploration. Population diversity is an effective way to monitor an algorithm’s ability of exploration and exploitation. Through the population diversity measurement, useful search information can be obtained. PSO with a different topology structure and a different boundary constraints handling strategy will have a different impact on particles’ exploration and exploitation ability. In this paper, the phenomenon of particles gets “stuck in” the boundary in PSO is experimentally studied and reported. The authors observe the position diversity time-changing curves of PSOs with different topologies and different boundary constraints handling techniques, and analyze the impact of these setting on the algorithm’s ability of exploration and exploitation. From these experimental studies, an algorithm’s ability of exploration and exploitation can be observed and the search information obtained; therefore, more effective algorithms can be designed to solve problems.

Author(s):  
Shi Cheng ◽  
Yuhui Shi ◽  
Quande Qin

Premature convergence happens in Particle Swarm Optimization (PSO) for solving both multimodal problems and unimodal problems. With an improper boundary constraints handling method, particles may get “stuck in” the boundary. Premature convergence means that an algorithm has lost its ability of exploration. Population diversity is an effective way to monitor an algorithm's ability of exploration and exploitation. Through the population diversity measurement, useful search information can be obtained. PSO with a different topology structure and a different boundary constraints handling strategy will have a different impact on particles' exploration and exploitation ability. In this chapter, the phenomenon of particles getting “stuck in” the boundary in PSO is experimentally studied and reported. The authors observe the position diversity time-changing curves of PSOs with different topologies and different boundary constraints handling techniques, and analyze the impact of these settings on the algorithm's abilities of exploration and exploitation. From these experimental studies, an algorithm's abilities of exploration and exploitation can be observed and the search information obtained; therefore, more effective algorithms can be designed to solve problems.


2011 ◽  
Vol 2 (3) ◽  
pp. 43-69 ◽  
Author(s):  
Shi Cheng ◽  
Yuhui Shi ◽  
Quande Qin

Premature convergence happens in Particle Swarm Optimization (PSO) for solving both multimodal problems and unimodal problems. With an improper boundary constraints handling method, particles may get “stuck in” the boundary. Premature convergence means that an algorithm has lost its ability of exploration. Population diversity is an effective way to monitor an algorithm’s ability of exploration and exploitation. Through the population diversity measurement, useful search information can be obtained. PSO with a different topology structure and a different boundary constraints handling strategy will have a different impact on particles’ exploration and exploitation ability. In this paper, the phenomenon of particles gets “stuck in” the boundary in PSO is experimentally studied and reported. The authors observe the position diversity time-changing curves of PSOs with different topologies and different boundary constraints handling techniques, and analyze the impact of these setting on the algorithm’s ability of exploration and exploitation. From these experimental studies, an algorithm’s ability of exploration and exploitation can be observed and the search information obtained; therefore, more effective algorithms can be designed to solve problems.


Author(s):  
Shi Cheng ◽  
Yuhui Shi

With an improper boundary constraints handling method, particles may get “stuck in” the boundary. Premature convergence means that an algorithm has lost its ability of exploration. Population diversity (PD) is an effective way to monitor an algorithm's ability for exploration and exploitation. Through the PD measurement, useful search information can be obtained. PSO with a different topology structure and different boundary constraints handling strategy will have a different impact on particles' exploration and exploitation ability. In this chapter, the phenomenon of particles gets “stuck in” the boundary in PSO and is experimentally studied and reported. The authors observe the position diversity time-changing curves of PSOs with different topologies and different boundary constraints handling techniques and analyze the impact of these strategies on the algorithm's ability of exploration and exploitation.


Author(s):  
Shoubao Su ◽  
Zhaorui Zhai ◽  
Chishe Wang ◽  
Kaimeng Ding

The traditional fractional-order particle swarm optimization (FOPSO) algorithm depends on the fractional order [Formula: see text], and it is easy to fall into local optimum. To overcome these disadvantages, a novel perspective with PID gains tuning procedure is proposed by combining the time factor with FOPSO, i.e. a new fractional-order particle swarm optimization called TFFV-PSO, which reduces the dependence on the fractional order to enhance the ability of particles to escape from local optimums. According to its influence on the performance of the algorithm, the time factor is varied with population diversity parameters to balance the exploration and exploitation capabilities of the particle swarm, so as to adjust the convergence speed of the algorithm, then it follows that a better convergence performance will be obtained. The improved method is tested on several benchmark functions and applied to tune the PID controller parameters. The experimental results and the comparison with previous other methods show that our proposed TFFV-PSO provides an adequate velocity of convergence and a satisfying accuracy, as well as even better robustness.


Author(s):  
Qingxue Liu ◽  
Barend Jacobus van Wyk ◽  
Shengzhi Du ◽  
Yanxia Sun

A new particle optimization algorithm with dynamic topology is proposed based on small world network. The technique imitates the dissemination of information in a small world network by dynamically updating the neighborhood topology of the Particle Swarm Optimization (PSO). In comparison with other four classic topologies and two PSO algorithms based on small world network, the proposed dynamic neighborhood strategy is more effective in coordinating the exploration and exploitation ability of PSO. Simulations demonstrated that the convergence of the swarms is faster than its competitors. Meanwhile, the proposed method maintains population diversity and enhances the global search ability for a series of benchmark problems.


2012 ◽  
Vol 532-533 ◽  
pp. 1429-1433
Author(s):  
Na Li ◽  
Yuan Xiang Li

A new particle swarm optimization algorithm (a diversity guided particles swarm Optimization), which is guided by population diversity, is proposed. In order to overcome the premature convergence of the algorithm, a metric to measure the swarm diversity is designed, the update of velocity and position of particles is controlled by this criteria, and the four sub-processes are introduced in the process of updating in order to increase the swarm diversity, which enhance to the ability of particle swarm optimization algorithm (PSO) to break away from the local optimum. The experimental results exhibit that the new algorithm not only has great advantage of global search capability, but also can avoid the premature convergence problem effectively.


2014 ◽  
Vol 599-601 ◽  
pp. 1453-1456
Author(s):  
Ju Wang ◽  
Yin Liu ◽  
Wei Juan Zhang ◽  
Kun Li

The reconstruction algorithm has a hot research in compressed sensing. Matching pursuit algorithm has a huge computational task, when particle swarm optimization has been put forth to find the best atom, but it due to the easy convergence to local minima, so the paper proposed a algorithm ,which based on improved particle swarm optimization. The algorithm referred above combines K-mean and particle swarm optimization algorithm. The algorithm not only effectively prevents the premature convergence, but also improves the K-mean’s local. These findings indicated that the algorithm overcomes premature convergence of particle swarm optimization, and improves the quality of image reconstruction.


Author(s):  
Wei Li ◽  
Xiang Meng ◽  
Ying Huang ◽  
Soroosh Mahmoodi

AbstractMultiobjective particle swarm optimization (MOPSO) algorithm faces the difficulty of prematurity and insufficient diversity due to the selection of inappropriate leaders and inefficient evolution strategies. Therefore, to circumvent the rapid loss of population diversity and premature convergence in MOPSO, this paper proposes a knowledge-guided multiobjective particle swarm optimization using fusion learning strategies (KGMOPSO), in which an improved leadership selection strategy based on knowledge utilization is presented to select the appropriate global leader for improving the convergence ability of the algorithm. Furthermore, the similarity between different individuals is dynamically measured to detect the diversity of the current population, and a diversity-enhanced learning strategy is proposed to prevent the rapid loss of population diversity. Additionally, a maximum and minimum crowding distance strategy is employed to obtain excellent nondominated solutions. The proposed KGMOPSO algorithm is evaluated by comparisons with the existing state-of-the-art multiobjective optimization algorithms on the ZDT and DTLZ test instances. Experimental results illustrate that KGMOPSO is superior to other multiobjective algorithms with regard to solution quality and diversity maintenance.


2021 ◽  
Vol 13 (13) ◽  
pp. 2514
Author(s):  
Qianwei Dai ◽  
Hao Zhang ◽  
Bin Zhang

The chaos oscillation particle swarm optimization (COPSO) algorithm is prone to binge trapped in the local optima when dealing with certain complex models in ground-penetrating radar (GPR) data inversion, because it inherently suffers from premature convergence, high computational costs, and extremely slow convergence times, especially in the middle and later periods of iterative inversion. Considering that the bilateral connections between different particle positions can improve both the algorithmic searching efficiency and the convergence performance, we first develop a fast single-trace-based approach to construct an initial model for 2-D PSO inversion and then propose a TV-regularization-based improved PSO (TVIPSO) algorithm that employs total variation (TV) regularization as a constraint technique to adaptively update the positions of particles. B by adding the new velocity variations and optimal step size matrices, the search range of the random particles in the solution space can be significantly reduced, meaning blindness in the search process can be avoided. By introducing constraint-oriented regularization to allow the optimization search to move out of the inaccurate region, the premature convergence and blurring problems can be mitigated to further guarantee the inversion accuracy and efficiency. We report on three inversion experiments involving multilayered, fluctuated terrain models and a typical complicated inner-interface model to demonstrate the performance of the proposed algorithm. The results of the fluctuated terrain model show that compared with the COPSO algorithm, the fitness error (MAE) of the TVIPSO algorithm is reduced from 2.3715 to 1.0921, while for the complicated inner-interface model the fitness error (MARE) of the TVIPSO algorithm is reduced from 1.9539 to 1.5674.


Sign in / Sign up

Export Citation Format

Share Document