Antimicrobial Edible Films and Coatings for Fruits and Vegetables

Author(s):  
Amrita Poonia

Non-degradable packaging materials are doing much damage to the environment. So the interest has been developed in biodegradable films and coatings these days. Use of edible films and coatings is eco-friendly technology used for enhancing the shelf life of the fruits and vegetables. The use of antimicrobial compounds in edible coatings of proteins, starch, cellulose derivatives, chitosan, alginate, fruit puree, and egg albumin has been successfully added to the edible films and coatings. This chapter focuses on the development of edible films and coatings with antimicrobial activity, effect of these coatings on the target microorganisms, the influence of these antimicrobial agents on mechanical & barrier properties and application of antimicrobial edible coatings on the quality of fresh fruits and vegetables.

2018 ◽  
pp. 177-195
Author(s):  
Amrita Poonia

Non-degradable packaging materials are doing much damage to the environment. So the interest has been developed in biodegradable films and coatings these days. Use of edible films and coatings is eco-friendly technology used for enhancing the shelf life of the fruits and vegetables. The use of antimicrobial compounds in edible coatings of proteins, starch, cellulose derivatives, chitosan, alginate, fruit puree, and egg albumin has been successfully added to the edible films and coatings. This chapter focuses on the development of edible films and coatings with antimicrobial activity, effect of these coatings on the target microorganisms, the influence of these antimicrobial agents on mechanical & barrier properties and application of antimicrobial edible coatings on the quality of fresh fruits and vegetables.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Mohammad Davachi ◽  
Neethu Pottackal ◽  
Hooman Torabi ◽  
Alireza Abbaspourrad

AbstractThere is growing interest among the public and scientific community toward the use of probiotics to potentially restore the composition of the gut microbiome. With the aim of preparing eco-friendly probiotic edible films, we explored the addition of probiotics to the seed mucilage films of quince, flax, and basil. These mucilages are natural and compatible blends of different polysaccharides that have demonstrated medical benefits. All three seed mucilage films exhibited high moisture retention regardless of the presence of probiotics, which is needed to help preserve the moisture/freshness of food. Films from flax and quince mucilage were found to be more thermally stable and mechanically robust with higher elastic moduli and elongation at break than basil mucilage films. These films effectively protected fruits against UV light, maintaining the probiotics viability and inactivation rate during storage. Coated fruits and vegetables retained their freshness longer than uncoated produce, while quince-based probiotic films showed the best mechanical, physical, morphological and bacterial viability. This is the first report of the development, characterization and production of 100% natural mucilage-based probiotic edible coatings with enhanced barrier properties for food preservation applications containing probiotics.


Author(s):  
Filiz Uçan ◽  
Hatice Aysun Mercimek

Requirement simple technology, low production costs, lack of polluting effects and reliability in terms of health of it is the most important advantages of edible films. Chitosan that extend the shelf life of food and increase the economic efficiency of packaging materials is one of the new materials used for edible films. Chitosan was obtained by deacetylation of chitin which is the most commonly occurred polymer after cellulose in nature, in shells of arthropods such as crab, shrimp, lobster and in cell walls of some bacteria and fungi. Chitosan has the important bioactive properties such as hemostatic, bacteriostatic, fungistatic, spermicidal, anticarcinogenic, anticholesteremic, antacids, antiulcer, wound and bone healing accelerator and stimulating the immune system. As well as these features, the film forming and barrier properties of its, chitosan is made the ideal material for edible films and coatings in antimicrobial characters. Especially, in the protection of qualities and the improving storage times of fruits and vegetables, have been revealed the potential use of chitosan. The coating food with chitosan films reduces the oxygen partial pressure in the package, maintains temperature with moisture transfer between food and its environment, declines dehydration, delays enzymatic browning in fruits and controls respiration. In addition to, chitosan are also used on issues such as the increasing the natural flavour, setting texture, increasing of the emulsifying effect, stabilization of color and deacidification.


2020 ◽  
Vol 9 (8) ◽  
Author(s):  
Maria Clara Guimarães ◽  
Joyce Fagundes Gomes Motta ◽  
Dayana Ketrin Silva Francisco Madella ◽  
Lívia de Aquino Garcia Moura ◽  
Carlos Eduardo de Souza Teodoro ◽  
...  

The minimally processed vegetable (MPV) market has been growing in recent decades. This growth is related to the change in lifestyle and eating habits of consumers who seek practical and healthy food for consumption. Maintaining the characteristics and quality of MPVs is a significant challenge for producers and traders. Minimal processing steps increase the perishability of these MPVs, thus increasing oxidative reactions and their metabolic rate. The research focused on the development of technologies that reduce these reactions gained prominence. Edible films and coatings produced from natural sources have emerged as alternative packaging for food applications and have received attention due to their advantages, such as their biodegradable and renewable nature, availability, and cost. The use of edible coatings for the preservation of vegetables in the postharvest condition, whether intact or minimally processed, has been identified as an emerging technology of great potential as they can control the internal atmosphere of MPVs. Biopolymers such as polysaccharides, lipids, and proteins have been evaluated in the formulation of these coatings. The choice of appropriate material will depend on the characteristics of the plant, the biopolymer, and the intended objectives of the film. This review aims to present some application examples, the main types of edible coatings, and the application techniques used in MPVs based on the literature, to assist a choice that can generate greater coating efficiency.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3271
Author(s):  
Maricarmen Iñiguez-Moreno ◽  
Juan Arturo Ragazzo-Sánchez ◽  
Montserrat Calderón-Santoyo

Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.


2021 ◽  
Vol 7 (12) ◽  
pp. 1006
Author(s):  
Tânia F. L. Vicente ◽  
Marco F. L. Lemos ◽  
Rafael Félix ◽  
Patrícia Valentão ◽  
Carina Félix

Fungal phytopathogens are a growing problem all over the world; their propagation causes significant crop losses, affecting the quality of fruits and vegetables, diminishing the availability of food, leading to the loss of billions of euros every year. To control fungal diseases, the use of synthetic chemical fungicides is widely applied; these substances are, however, environmentally damaging. Marine algae, one of the richest marine sources of compounds possessing a wide range of bioactivities, present an eco-friendly alternative in the search for diverse compounds with industrial applications. The synthesis of such bioactive compounds has been recognized as part of microalgal responsiveness to stress conditions, resulting in the production of polyphenols, polysaccharides, lipophilic compounds, and terpenoids, including halogenated compounds, already described as antimicrobial agents. Furthermore, many studies, in vitro or in planta, have demonstrated the inhibitory activity of these compounds with respect to fungal phytopathogens. This review aims to gather the maximum of information addressing macroalgae extracts with potential inhibition against fungal phytopathogens, including the best inhibitory results, while presenting some already reported mechanisms of action.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 990
Author(s):  
Annachiara Pirozzi ◽  
Giovanna Ferrari ◽  
Francesco Donsì

The usage of edible coatings (ECs) represents an emerging approach for extending the shelf life of highly perishable foods, such as fresh and fresh-cut fruits and vegetables. This review addresses, in particular, the use of reinforcing agents in film-forming solutions to tailor the physicochemical, mechanical and antimicrobial properties of composite coatings. In this scenario, this review summarizes the available data on the various forms of nanocellulose (NC) typically used in ECs, focusing on the impact of their origin and chemical or physical treatments on their structural properties (morphology and shape, dimension and crystallinity) and their functionality. Moreover, this review also describes the deposition techniques of composite ECs, with details on the food engineering principles in the application methods and formulation optimization. The critical analysis of the recent advances in NC-based ECs contributes to a better understanding of the impact of the incorporation of complex nanoparticles in polymeric matrices on the enhancement of coating properties, as well as on the increase of shelf life and the quality of fruits and vegetables.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2282
Author(s):  
Sneh Punia Punia Bangar ◽  
Vandana Chaudhary ◽  
Neha Thakur ◽  
Priyanka Kajla ◽  
Manoj Kumar ◽  
...  

Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc., and other consumable constituents extracted from various non-conventional sources are used alone or imbibed together. Edible packaging with antimicrobial components had led to the development of the hypothesis of active packaging which safeguards the quality of foods as well as health of consumers. Natural antimicrobial agents (NAMAs) like essential oils from spices, bioactive compounds derived from vegetables and fruits, animal and microorganism derived compounds having antimicrobial properties can be potentially used in edible films as superior replcement for synthetic compounds, thus serving the purpose of quality and heath. Most of the natural antimicrobial agents enjoy GRAS status and are safer than their synthetic counterparts. This review focuses on updated literature on the sources, properties and potential applications of NAMAs in the food industry. This review also analyzes the biodegradability and biocompatibility and edibility properties of NAMAs enriched films and it can be concluded that NAMAs are better substitutes but affect the organoleptic as well as the mechanical properties of the films. Despite many advantages, the inclusion of NAMAs into the films needs to be investigated more to quantify the inhibitory concentration without affecting the properties of films and exerting potential antimicrobial action to ensure food safety.


Sign in / Sign up

Export Citation Format

Share Document