Human Voice Waveform Analysis for Categorization of Healthy and Parkinson Subjects

2018 ◽  
pp. 397-411
Author(s):  
Saloni Saloni ◽  
Rajender K. Sharma ◽  
Anil K. Gupta

Parkinson disease is a neurological disorder. In this disease control over body muscles get disturbed. In almost 90% of the cases, people suffering from Parkinson disease (PD) have speech disorders. The goal of the paper is to differentiate healthy and PD affected persons using voice analysis. There are no well-developed lab techniques available for Parkinson detection. Parkinson detection using voice analysis is a noninvasive, reliable and economic method. Using this technique patient need not to visit the clinic. In this paper the authors have recorded 155 phonations from 25 healthy and 22 PD affected persons. Classification is done using two proposed parameters: Local angular frequency and instantaneous deviation in the waveform. Support vector machine is used as a classifier. Maximum 86.8% classification accuracy is achieved using linear kernel function.

Author(s):  
Saloni Saloni ◽  
Rajender K. Sharma ◽  
Anil K. Gupta

Parkinson disease is a neurological disorder. In this disease control over body muscles get disturbed. In almost 90% of the cases, people suffering from Parkinson disease (PD) have speech disorders. The goal of the paper is to differentiate healthy and PD affected persons using voice analysis. There are no well-developed lab techniques available for Parkinson detection. Parkinson detection using voice analysis is a noninvasive, reliable and economic method. Using this technique patient need not to visit the clinic. In this paper the authors have recorded 155 phonations from 25 healthy and 22 PD affected persons. Classification is done using two proposed parameters: Local angular frequency and instantaneous deviation in the waveform. Support vector machine is used as a classifier. Maximum 86.8% classification accuracy is achieved using linear kernel function.


Author(s):  
Narina Thakur ◽  
Deepti Mehrotra ◽  
Abhay Bansal ◽  
Manju Bala

Objective: Since the adequacy of Learning Objects (LO) is a dynamic concept and changes in its use, needs and evolution, it is important to consider the importance of LO in terms of time to assess its relevance as the main objective of the proposed research. Another goal is to increase the classification accuracy and precision. Methods: With existing IR and ranking algorithms, MAP optimization either does not lead to a comprehensively optimal solution or is expensive and time - consuming. Nevertheless, Support Vector Machine learning competently leads to a globally optimal solution. SVM is a powerful classifier method with its high classification accuracy and the Tilted time window based model is computationally efficient. Results: This paper proposes and implements the LO ranking and retrieval algorithm based on the Tilted Time window and the Support Vector Machine, which uses the merit of both methods. The proposed model is implemented for the NCBI dataset and MAT Lab. Conclusion: The experiments have been carried out on the NCBI dataset, and LO weights are assigned to be relevant and non - relevant for a given user query according to the Tilted Time series and the Cosine similarity score. Results showed that the model proposed has much better accuracy.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 194
Author(s):  
Sarah Gonzalez ◽  
Paul Stegall ◽  
Harvey Edwards ◽  
Leia Stirling ◽  
Ho Chit Siu

The field of human activity recognition (HAR) often utilizes wearable sensors and machine learning techniques in order to identify the actions of the subject. This paper considers the activity recognition of walking and running while using a support vector machine (SVM) that was trained on principal components derived from wearable sensor data. An ablation analysis is performed in order to select the subset of sensors that yield the highest classification accuracy. The paper also compares principal components across trials to inform the similarity of the trials. Five subjects were instructed to perform standing, walking, running, and sprinting on a self-paced treadmill, and the data were recorded while using surface electromyography sensors (sEMGs), inertial measurement units (IMUs), and force plates. When all of the sensors were included, the SVM had over 90% classification accuracy using only the first three principal components of the data with the classes of stand, walk, and run/sprint (combined run and sprint class). It was found that sensors that were placed only on the lower leg produce higher accuracies than sensors placed on the upper leg. There was a small decrease in accuracy when the force plates are ablated, but the difference may not be operationally relevant. Using only accelerometers without sEMGs was shown to decrease the accuracy of the SVM.


Author(s):  
Chenguang Li ◽  
Hongjun Yang ◽  
Long Cheng

AbstractAs a relatively new physiological signal of brain, functional near-infrared spectroscopy (fNIRS) is being used more and more in brain–computer interface field, especially in the task of motor imagery. However, the classification accuracy based on this signal is relatively low. To improve the accuracy of classification, this paper proposes a new experimental paradigm and only uses fNIRS signals to complete the classification task of six subjects. Notably, the experiment is carried out in a non-laboratory environment, and movements of motion imagination are properly designed. And when the subjects are imagining the motions, they are also subvocalizing the movements to prevent distraction. Therefore, according to the motor area theory of the cerebral cortex, the positions of the fNIRS probes have been slightly adjusted compared with other methods. Next, the signals are classified by nine classification methods, and the different features and classification methods are compared. The results show that under this new experimental paradigm, the classification accuracy of 89.12% and 88.47% can be achieved using the support vector machine method and the random forest method, respectively, which shows that the paradigm is effective. Finally, by selecting five channels with the largest variance after empirical mode decomposition of the original signal, similar classification results can be achieved.


Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tawfik Yahya ◽  
Nur Azah Hamzaid ◽  
Sadeeq Ali ◽  
Farahiyah Jasni ◽  
Hanie Nadia Shasmin

AbstractA transfemoral prosthesis is required to assist amputees to perform the activity of daily living (ADL). The passive prosthesis has some drawbacks such as utilization of high metabolic energy. In contrast, the active prosthesis consumes less metabolic energy and offers better performance. However, the recent active prosthesis uses surface electromyography as its sensory system which has weak signals with microvolt-level intensity and requires a lot of computation to extract features. This paper focuses on recognizing different phases of sitting and standing of a transfemoral amputee using in-socket piezoelectric-based sensors. 15 piezoelectric film sensors were embedded in the inner socket wall adjacent to the most active regions of the agonist and antagonist knee extensor and flexor muscles, i. e. region with the highest level of muscle contractions of the quadriceps and hamstring. A male transfemoral amputee wore the instrumented socket and was instructed to perform several sitting and standing phases using an armless chair. Data was collected from the 15 embedded sensors and went through signal conditioning circuits. The overlapping analysis window technique was used to segment the data using different window lengths. Fifteen time-domain and frequency-domain features were extracted and new feature sets were obtained based on the feature performance. Eight of the common pattern recognition multiclass classifiers were evaluated and compared. Regression analysis was used to investigate the impact of the number of features and the window lengths on the classifiers’ accuracies, and Analysis of Variance (ANOVA) was used to test significant differences in the classifiers’ performances. The classification accuracy was calculated using k-fold cross-validation method, and 20% of the data set was held out for testing the optimal classifier. The results showed that the feature set (FS-5) consisting of the root mean square (RMS) and the number of peaks (NP) achieved the highest classification accuracy in five classifiers. Support vector machine (SVM) with cubic kernel proved to be the optimal classifier, and it achieved a classification accuracy of 98.33 % using the test data set. Obtaining high classification accuracy using only two time-domain features would significantly reduce the processing time of controlling a prosthesis and eliminate substantial delay. The proposed in-socket sensors used to detect sit-to-stand and stand-to-sit movements could be further integrated with an active knee joint actuation system to produce powered assistance during energy-demanding activities such as sit-to-stand and stair climbing. In future, the system could also be used to accurately predict the intended movement based on their residual limb’s muscle and mechanical behaviour as detected by the in-socket sensory system.


Author(s):  
Xueli Wang ◽  
Yufeng Zhang ◽  
Hongxin Zhang ◽  
Xiaofeng Wei ◽  
Guangyuan Wang

Abstract For wireless transmission, radio-frequency device anti-cloning has become a major security issue. Radio-frequency distinct native attribute (RF-DNA) fingerprint is a developing technology to find the difference among RF devices and identify them. Comparing with previous research, (1) this paper proposed that mean (μ) feature should be added into RF-DNA fingerprint. Thus, totally four statistics (mean, standard deviation, skewness, and kurtosis) were calculated on instantaneous amplitude, phase, and frequency generated by Hilbert transform. (2) We first proposed using the logistic regression (LR) and support vector machine (SVM) to recognize such extracted fingerprint at different signal-to-noise ratio (SNR) environment. We compared their performance with traditional multiple discriminant analysis (MDA). (3) In addition, this paper also proposed to extract three sub-features (amplitude, phase, and frequency) separately to recognize extracted fingerprint under MDA. In order to make our results more universal, additive white Gaussian noise was adopted to simulate the real environment. The results show that (1) mean feature conducts an improvement in the classification accuracy, especially in low SNR environment. (2) MDA and SVM could successfully identify these RF devices, and the classification accuracy could reach 94%. Although the classification accuracy of LR is 89.2%, it could get the probability of each class. After adding a different noise, the recognition accuracy is more than 80% when SNR≥5 dB using MDA or SVM. (3) Frequency feature has more discriminant information. Phase and amplitude play an auxiliary but also pivotal role in classification recognition.


Sign in / Sign up

Export Citation Format

Share Document