Moving Object Classification Under Illumination Changes Using Binary Descriptors

Author(s):  
S. Vasavi ◽  
Ayesha Farha Shaik ◽  
Phani chaitanya Krishna Sunkara

Object recognition and classification has become important in a surveillance video situated at prominent areas such as airports, banks, military installations, etc. Outdoor environments are more challenging for moving object classification because of incomplete appearance details of moving objects due to illumination changes and large distance between the camera and moving objects. As such, there is a need to monitor and classify the moving objects by considering the challenges of video in the real time. Training the classifiers using feature-based approaches is easier and faster than pixel-based approaches in object classification. Extraction of a set of features from the object of interest is most important for classification. Viewpoint and sources of light illumination plays major role in the appearance of an object. Abrupt transitions are identified using Chi-square and corners are detected using Harris corner detection. Silhouettes are captured using background subtraction and feature extraction is done using ORB. k-NN classifier is used for classification.

Author(s):  
S. Vasavi ◽  
Reshma Shaik ◽  
Sahithi Yarlagadda

Object recognition and classification (human beings, animals, buildings, vehicles) has become important in a surveillance video situated at prominent areas such as airports, banks, military installations etc., Outdoor environments are more challenging for moving object classification because of incomplete appearance details of moving objects due to occlusions and large distance between the camera and moving objects. As such, there is a need to monitor and classify the moving objects by considering the challenges of video in the real time. Training the classifiers using feature based is easier and faster than pixel-based approaches in object classification. Extraction of a set of features from the object of interest is most important for classification. Textural features, color features and structural features can be chosen for classifying the object. But in real time video, object poses are not always the same. Zernike moments have been shown to be rotation invariant and noise robust due to Orthogonality property.


2004 ◽  
Vol 14 (1) ◽  
pp. 117-132 ◽  
Author(s):  
Vesna Zeljkovic ◽  
Zeljen Trpovski ◽  
Vojin Senk

A new, simple, fast and effective method for moving object detection in outdoor environments, invariant to extreme illumination changes is presented as an improvement to the shading model method described in [8]. It is based on an analytical parameter introduced in the shading model, background updating technique and window processing.


A real time change detection technique is proposed in order to detect the moving objects in a real image sequence. The described method is independent of the illumination of the analyzed scene. It is based on a comparison of corresponding pixels that belong to different frames and combines time and space analysis, which augments the algorithm’s precision and accuracy. The efficiency of the described technique is illustrated on a real world interior video sequence recorded under significant illumination changes.


Author(s):  
SUMIT KUMAR SINGH ◽  
MAGAN SINGH

Moving object segmentation has its own niche as an important topic in computer vision. It has avidly being pursued by researchers. Background subtraction method is generally used for segmenting moving objects. This method may also classify shadows as part of detected moving objects. Therefore, shadow detection and removal is an important step employed after moving object segmentation. However, these methods are adversely affected by changing environmental conditions. They are vulnerable to sudden illumination changes, and shadowing effects. Therefore, in this work we propose a faster, efficient and adaptive background subtraction method, which periodically updates the background frame and gives better results, and a shadow elimination method which removes shadows from the segmented objects with good discriminative power. Keywords- Moving object segmentation,


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
MingFang Zhang ◽  
Rui Fu ◽  
YingShi Guo ◽  
Li Wang

Moving object classification is essential for autonomous vehicle to complete high-level tasks like scene understanding and motion planning. In this paper, we propose a novel approach for classifying moving objects into four classes of interest using 3D point cloud in urban traffic environment. Unlike most existing work on object recognition which involves dense point cloud, our approach combines extensive feature extraction with the multiframe classification optimization to solve the classification task when partial occlusion occurs. First, the point cloud of moving object is segmented by a data preprocessing procedure. Then, the efficient features are selected via Gini index criterion applied to the extended feature set. Next, Bayes Decision Theory (BDT) is employed to incorporate the preliminary results from posterior probability Support Vector Machine (SVM) classifier at consecutive frames. The point cloud data acquired from our own LIDAR as well as public KITTI dataset is used to validate the proposed moving object classification method in the experiments. The results show that the proposed SVM-BDT classifier based on 18 selected features can effectively recognize the moving objects.


2013 ◽  
Vol 321-324 ◽  
pp. 1041-1045
Author(s):  
Jian Rong Cao ◽  
Yang Xu ◽  
Cai Yun Liu

After background modeling and segmenting of moving object for surveillance video, this paper firstly presented a noninteractive matting algorithm of video moving object based on GrabCut. These matted moving objects then were placed in a background image on the condition of nonoverlapping arrangement, so a frame could be obtained with several moving objects placed in a background image. Finally, a series of these frame images could be achieved in timeline and a single camera surveillance video synopsis could be formed. The experimental results show that this video synopsis has the features of conciseness and readable concentrated form and the efficiency of browsing and retrieval can be improved.


The resistance of the improved moving objects detection algorithm to various types of additive and multiplicative noise is discussed. The algorithm’s first phase contains the noise suppression filter based on spatiotemporal blocks including dimensionality reduction technique for a compact scalar representation of each block, and the second phase consists of the moving object detection algorithm resistant to illumination changes that detects and tracks moving objects.


2019 ◽  
Vol 14 (1) ◽  
pp. 21-30
Author(s):  
A. Shyamala ◽  
S. Selvaperumal ◽  
G. Prabhakar

Background: Moving object detection in dynamic environment video is more complex than the static environment videos. In this paper, moving objects in video sequences are detected and segmented using feature extraction based Adaptive Neuro-Fuzzy Inference System (ANFIS) classifier approach. The proposed moving object detection methodology is tested on different video sequences in both indoor and outdoor environments. Methods: This proposed methodology consists of background subtraction and classification modules. The absolute difference image is constructed in background subtraction module. The features are extracted from this difference image and these extracted features are trained and classified using ANFIS classification module. Results: The proposed moving object detection methodology is analyzed in terms of Accuracy, Recall, Average Accuracy, Precision and F-measure. The proposed moving object segmentation methodology is executed on different Central Processing Unit (CPU) processor as 1.8 GHz and 2.4 GHz for evaluating the performance during moving object segmentation. At present, some moving object detection systems used 1.8 GHz CPU processor. Recently, many systems for moving object detection are using 2.4 GHz CPU processor. Hence, CPU processors 1.8 GHz and 2.4 GHz are used in this paper for detecting the moving objects in video sequences. Table 1 shows the performance evaluation of proposed moving object detection on CPU processor 1.8 GHz (100 sequence). Table 2 shows the performance evaluation of proposed moving object detection on CPU processor 2.8 GHz (100 sequence). The average moving object detection time on CPU processor 1.8 GHz for fountain sequence is 62.5 seconds, for airport sequence is 64.7 seconds, for meeting room sequence is 71.6 seconds and for Lobby sequence is 73.5 seconds, respectively, as depicted in Table 3. The average elapsed time for moving object detection on 100 sequences is 68.07 seconds. The average moving object detection time on CPU processor 2.4 GHz for fountain sequence is 56.5 seconds, for airport sequence is 54.7 seconds, for meeting room sequence is 65.8 seconds and for Lobby sequence is 67.5 seconds, respectively, as depicted in Table 4. The average elapsed time for moving object detection on 100 sequences is 61.12 seconds. It is very clear from Table 3 and Table 4; the moving object detection time is reduced when the frequency of the CPU processor increases. Conclusion: In this paper, moving object is detected and segmented using ANFIS classifier. The proposed method initially segments the background image and then features are extracted from the threshold image. These features are trained and classified using ANFIS classification method. The proposed moving object detection method is tested on different video sequences which are obtained from different indoor and outdoor environments. The performance of the proposed moving object detection and segmentation methodology is analyzed in terms of Accuracy, Recall, Average Accuracy, Precision and F-measure.


2021 ◽  
Vol 10 (11) ◽  
pp. 742
Author(s):  
Xiaoyue Luo ◽  
Yanhui Wang ◽  
Benhe Cai ◽  
Zhanxing Li

Previous research on moving object detection in traffic surveillance video has mostly adopted a single threshold to eliminate the noise caused by external environmental interference, resulting in low accuracy and low efficiency of moving object detection. Therefore, we propose a moving object detection method that considers the difference of image spatial threshold, i.e., a moving object detection method using adaptive threshold (MOD-AT for short). In particular, based on the homograph method, we first establish the mapping relationship between the geometric-imaging characteristics of moving objects in the image space and the minimum circumscribed rectangle (BLOB) of moving objects in the geographic space to calculate the projected size of moving objects in the image space, by which we can set an adaptive threshold for each moving object to precisely remove the noise interference during moving object detection. Further, we propose a moving object detection algorithm called GMM_BLOB (GMM denotes Gaussian mixture model) to achieve high-precision detection and noise removal of moving objects. The case-study results show the following: (1) Compared with the existing object detection algorithm, the median error (MD) of the MOD-AT algorithm is reduced by 1.2–11.05%, and the mean error (MN) is reduced by 1.5–15.5%, indicating that the accuracy of the MOD-AT algorithm is higher in single-frame detection; (2) in terms of overall accuracy, the performance and time efficiency of the MOD-AT algorithm is improved by 7.9–24.3%, reflecting the higher efficiency of the MOD-AT algorithm; (3) the average accuracy (MP) of the MOD-AT algorithm is improved by 17.13–44.4%, the average recall (MR) by 7.98–24.38%, and the average F1-score (MF) by 10.13–33.97%; in general, the MOD-AT algorithm is more accurate, efficient, and robust.


Sign in / Sign up

Export Citation Format

Share Document