Motor Imagery Classification Using EEG Signals for Brain-Computer Interface Applications

Author(s):  
Subrota Mazumdar ◽  
Rohit Chaudhary ◽  
Suruchi Suruchi ◽  
Suman Mohanty ◽  
Divya Kumari ◽  
...  

In this chapter, a nearest neighbor (k-NN)-based method for efficient classification of motor imagery using EEG for brain-computer interfacing (BCI) applications has been proposed. Electroencephalogram (EEG) signals are obtained from multiple channels from brain. These EEG signals are taken as input features and given to the k-NN-based classifier to classify motor imagery. More specifically, the chapter gives an outline of the Berlin brain-computer interface that can be operated with minimal subject change. All the design and simulation works are carried out with MATLAB software. k-NN-based classifier is trained with data from continuous signals of EEG channels. After the network is trained, it is tested with various test cases. Performance of the network is checked in terms of percentage accuracy, which is found to be 99.25%. The result suggested that the proposed method is accurate for BCI applications.

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1273
Author(s):  
She ◽  
Zhou ◽  
Gan ◽  
Ma ◽  
Luo

In recent years, the accurate and real-time classification of electroencephalogram (EEG) signals has drawn increasing attention in the application of brain-computer interface technology (BCI). Supervised methods used to classify EEG signals have gotten satisfactory results. However, unlabeled samples are more frequent than labeled samples, so how to simultaneously utilize limited labeled samples and many unlabeled samples becomes a research hotspot. In this paper, we propose a new graph-based semi-supervised broad learning system (GSS-BLS), which combines the graph label propagation method to obtain pseudo-labels and then trains the GSS-BLS classifier together with other labeled samples. Three BCI competition datasets are used to assess the GSS-BLS approach and five comparison algorithms: BLS, ELM, HELM, LapSVM and SMIR. The experimental results show that GSS-BLS achieves satisfying Cohen’s kappa values in three datasets. GSS-BLS achieves the better results of each subject in the 2-class and 4-class datasets and has significant improvements compared with original BLS except subject C6. Therefore, the proposed GSS-BLS is an effective semi-supervised algorithm for classifying EEG signals.


2015 ◽  
Vol 25 (14) ◽  
pp. 1540023
Author(s):  
Germán Rodríguez-Bermúdez ◽  
Miguel Ángel Sánchez-Granero ◽  
Pedro J. García-Laencina ◽  
Manuel Fernández-Martínez ◽  
José Serna ◽  
...  

A Brain Computer Interface (BCI) system is a tool not requiring any muscle action to transmit information. Acquisition, preprocessing, feature extraction (FE), and classification of electroencephalograph (EEG) signals constitute the main steps of a motor imagery BCI. Among them, FE becomes crucial for BCI, since the underlying EEG knowledge must be properly extracted into a feature vector. Linear approaches have been widely applied to FE in BCI, whereas nonlinear tools are not so common in literature. Thus, the main goal of this paper is to check whether some Hurst exponent and fractal dimension based estimators become valid indicators to FE in motor imagery BCI. The final results obtained were not optimal as expected, which may be due to the fact that the nature of the analyzed EEG signals in these motor imagery tasks were not self-similar enough.


2020 ◽  
Vol 5 (2) ◽  
pp. 85-92
Author(s):  
Adi Wijaya ◽  
Teguh Bharata Adji ◽  
Noor Akhmad Setiawan

The multi-class motor imagery based on Electroencephalogram (EEG) signals in Brain-Computer Interface (BCI) systems still face challenges, such as inconsistent accuracy and low classification performance due to inter-subject dependent. Therefore, this study aims to improve multi-class EEG-motor imagery using two-stage detection and voting scheme on one-versus-one approach. The EEG signal used to carry out this research was extracted through a statistical measure of narrow window sliding. Furthermore, inter and cross-subject schemes were investigated on BCI competition IV-Dataset 2a to evaluate the effectiveness of the proposed method. The experimental results showed that the proposed method produced enhanced inter and cross-subject kappa coefficient values of 0.78 and 0.68, respectively, with a low standard deviation of 0.1 for both schemes. These results further indicated that the proposed method has an ability to address inter-subject dependent for promising and reliable BCI systems.


2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2854 ◽  
Author(s):  
Kwon-Woo Ha ◽  
Jin-Woo Jeong

Various convolutional neural network (CNN)-based approaches have been recently proposed to improve the performance of motor imagery based-brain-computer interfaces (BCIs). However, the classification accuracy of CNNs is compromised when target data are distorted. Specifically for motor imagery electroencephalogram (EEG), the measured signals, even from the same person, are not consistent and can be significantly distorted. To overcome these limitations, we propose to apply a capsule network (CapsNet) for learning various properties of EEG signals, thereby achieving better and more robust performance than previous CNN methods. The proposed CapsNet-based framework classifies the two-class motor imagery, namely right-hand and left-hand movements. The motor imagery EEG signals are first transformed into 2D images using the short-time Fourier transform (STFT) algorithm and then used for training and testing the capsule network. The performance of the proposed framework was evaluated on the BCI competition IV 2b dataset. The proposed framework outperformed state-of-the-art CNN-based methods and various conventional machine learning approaches. The experimental results demonstrate the feasibility of the proposed approach for classification of motor imagery EEG signals.


Sign in / Sign up

Export Citation Format

Share Document