Basic Concepts of Internet of Things and Game Theory

Author(s):  
Sungwook Kim

With the evolution of the Internet and related technologies, there has been an evolution of new paradigm, which is the Internet of Things (IoT). IoT is the network of physical objects, such as devices, embedded with electronics, software, sensors, and network connectivity that enables these objects to collect and exchange data. In the IoT, a large number of objects are connected to one another for information sharing, irrespective of their locations (Corcoran, 2016). Even though the IoT was defined at 1999, the concept of IoT has been in development for decades. As the technology and implementation of the IoT ideas move forward, different views for the concept of the IoT have appeared (Ma, 2011). Based on different views, in this book, the IoT is defined as a kind of modern technology, implicating machine to machine communications and person to computer communications will be extended to everything from everyday household objects to sensors monitoring the movement. Currently, we can see a few key areas of focus for the Internet of Things (IoT) that will require special attention over the course of the next decade on the part of computer science, energy technology, networks, wireless communication, and system platform. There are already a number of implementation case studies emerging from companies across a range of industry sectors.

With the evolution of the Internet and related technologies, there has been an evolution of new paradigm, which is the Internet of Things (IoT). IoT is the network of physical objects, such as devices, embedded with electronics, software, sensors, and network connectivity that enables these objects to collect and exchange data. In the IoT, a large number of objects are connected to one another for information sharing, irrespective of their locations (Corcoran, 2016). Even though the IoT was defined at 1999, the concept of IoT has been in development for decades. As the technology and implementation of the IoT ideas move forward, different views for the concept of the IoT have appeared (Ma, 2011). Based on different views, in this book, the IoT is defined as a kind of modern technology, implicating machine to machine communications and person to computer communications will be extended to everything from everyday household objects to sensors monitoring the movement. Currently, we can see a few key areas of focus for the Internet of Things (IoT) that will require special attention over the course of the next decade on the part of computer science, energy technology, networks, wireless communication, and system platform. There are already a number of implementation case studies emerging from companies across a range of industry sectors.


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Himanshu Shah

Many enterprises are considering, or are already, deploying Internet of Things (IoT) solutions,1 but IoT deployments have seen a dark side; one where implementation is partially completed or unsuccessful, which kills the business case driver.2 This article reviews the challenges one might experience and how to mitigate them. What is Internet of Things? The Internet of Things is the network of physical objects—devices, vehicles, buildings and other items embedded with electronics, software, sensors, and network connectivity—that enables these objects to collect and exchange data.


Author(s):  
Ch Rupa

The internet of things is the internetworking of physical devices, vehicles, buildings, and other items embedded with electronics, software, sensors, and network connectivity that enable these objects to collect and exchange data. Security has become an important issue everywhere. In current days, security is becoming necessary as the possibilities of attacks and threats are increasing day by day. In this situation, specific sensitive premises should monitor by a secure alert system with IoT-based advanced technology in order to prevent the threats and attacks on persons or system assets by intruders. The purpose of this system is to notify the use of the intruder's presence at premises and send alert messages to the authority people who help to take prevention actions as well as detection if in misfire situations. This notification will be helpful to know about intruder's presence even if right persons are away from the location.


2021 ◽  
Vol 7 ◽  
pp. 65-70
Author(s):  
Tsvetelina Simeonova

The aim of the work is to consider and compare the features of distributed systems, SCADA and IIoT. Both SCADA and IoT include sensors and data collection. Although they differ in many respects, they share a common goal. The idea of a smart grid leads to the integration of SCADA and IoT. SCADA is useful for monitoring and managing installations or industrial equipment. The Internet of Things is a collection of physical devices with different implementations, software upgrades, sensors, actuators, and network connectivity, all of which work together to enable objects to connect and exchange data. The focus of the article is the consideration, as distributed systems and in comparative terms, of the development of industrial technologies IoT and SCADA. The presentation will include a summary of the characteristics of these two technologies and a structural-functional analysis of the efficiency in the integration of the latest generations of SCADA systems in the functionality of IoT. The possibilities for integration are shown, as well as the prerequisites for this. The results can be used as recommendations in the areas of design and operation.


Author(s):  
Sree Naga Raja Sekhar Mallela

Abstract: The most common buzzwords in the world is “The Internet of things” (IoT) and IOT describes the network of physical objects, so known as, "things" those are rooted with sensors in the devices, application software, technologies that is used for the resolution of connecting one end to another end and exchanging information with other devices and systems over the Internet. The IoT 5G technologies can also be used in journalism and the primary focus is to increase M2M interaction of mass communication devices. One way it is “ubiquitous computing” can occur using any device, in any location, and in any format. The Internet of Things (IoT) is all about small cost sensors grabbing data to communicate with one device to another device using cloud solutions. Coming to the 5th generation mobile network. We have already started using 4G networks and as we know that, start with 1G, 2G, 3G, and 4G networks. The 5th generation network is going to enable an upcoming new network that will associate virtually every person globally connected and everything organized including IoT devices, objects and machines. Central communication and Journalism is the activity of gathering right information, evaluating, generating, and presenting broadcast information. It is high time to start using IOT Technology using 5th generation high-speed network connectivity devices to communicate or data transfer in the area of journalism. Keywords: IOT – Internet Of Things, 5G- Fifth Generation in data network, JMC – Journalism and Mass Communications, M2M – Machine to Machine, Cloud , Artificial intelligence and Machine Learning.


Author(s):  
Itamir Barroca ◽  
Gibeon Aquino ◽  
Maria Alzete Lima

The high cost of healthcare services, the aging population and the increase of chronic disease is becoming a global concern. Several studies have indicated the need to minimize the process of hospitalization and the high cost of patient care. A promising trend in healthcare is to move the routines of medical checks from a hospital to the patient's home. Moreover, recent advances in microelectronics have boosted the advent of a revolutionary model involving systems and communication technology. This new paradigm, the Internet of Things (IoT), has a broad applicability in several areas, including healthcare. Based on this context, this chapter aims to describe a computer platform based on IoT for the remote monitoring of patients in critical condition. Furthermore, it is planned to approach the current advances and challenges of conceiving and developing a set of technology-centric, targeting issues relevant to underdeveloped countries, particularly in regards to Brazil's health infrastructure.


Author(s):  
Fausto E. Jacome

Emerging technologies such as machine learning, the cloud, the internet of things (IoT), social web, mobility, robotics, and blockchain, among others, are powering a technological revolution in such a way that are transforming all human activities. These new technologies have generated creative ways of offering goods and services. Today's consumers demand in addition to quality, innovation, a real-time and ubiquitous service. In this context, what is the challenge that academy faces? What is the effect of these new technologies on the universities mission? What are people's expectations about academy in this new era? This chapter tries to get answers to these questions and explain how these emerging technologies are converting universities to lead society transformation to the digital age. Under this new paradigm, there are only two roads: innovate or perish. As might be expected universities are embracing these technologies for innovating themselves.


2020 ◽  
Vol 64 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Gustavo Cattelan Nobre ◽  
Elaine Tavares

The debate about circular economy (CE) is increasingly present in the strategic agenda of organisations around the world, being driven by government agencies and general population pressures, or by organisations’ own vision for a sustainable future. This is due in part to the increasing possibility of turning original theoretical CE proposals into real economically viable initiatives, now possible with modern technology applications such as big data and the internet of things (IoT). Information technology (IT) professionals have been called upon to incorporate technology projects into their strategic plans to support their organisations’ transition to CE, but a structured framework with the necessary IT capabilities still lacks. This study focuses on taking the first step towards this path, by extending the technology attributes present on the existing Ellen MacArthur Foundation (EMF) Regenerate, Share, Optimise, Loop, Virtualise and Exchange (ReSOLVE) framework. The research was conducted based on an extensive literature review through 226 articles retrieved from Scopus® and Web of ScienceTM databases, which were triangulated, validated and complemented with content analysis using the ‘R’ statistical tool, grey literature research and inputs from specialists. Part I describes the introduction and methods used in this study.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4375 ◽  
Author(s):  
Yuxuan Wang ◽  
Jun Yang ◽  
Xiye Guo ◽  
Zhi Qu

As one of the information industry’s future development directions, the Internet of Things (IoT) has been widely used. In order to reduce the pressure on the network caused by the long distance between the processing platform and the terminal, edge computing provides a new paradigm for IoT applications. In many scenarios, the IoT devices are distributed in remote areas or extreme terrain and cannot be accessed directly through the terrestrial network, and data transmission can only be achieved via satellite. However, traditional satellites are highly customized, and on-board resources are designed for specific applications rather than universal computing. Therefore, we propose to transform the traditional satellite into a space edge computing node. It can dynamically load software in orbit, flexibly share on-board resources, and provide services coordinated with the cloud. The corresponding hardware structure and software architecture of the satellite is presented. Through the modeling analysis and simulation experiments of the application scenarios, the results show that the space edge computing system takes less time and consumes less energy than the traditional satellite constellation. The quality of service is mainly related to the number of satellites, satellite performance, and task offloading strategy.


Sign in / Sign up

Export Citation Format

Share Document