Predictive Modeling Versus Regression

Author(s):  
Patricia Cerrito

Predictive modeling includes regression, both logistic and linear, depending upon the type of outcome variable. It can also include the generalized linear model. However, there are other types of models also available, including decision trees and artificial neural networks under the general term of predictive modeling. Predictive modeling includes nearest neighbor discriminant analysis, also known as memory based reasoning. These other models are nonparametric and do not require that you know the probability distribution of the underlying patient population. Therefore, they are much more flexible when used to examine patient outcomes. Because predictive modeling uses regression in addition to these other models, the end results will improve upon those found using just regression by itself.

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 721
Author(s):  
Krzysztof Adamczyk ◽  
Wilhelm Grzesiak ◽  
Daniel Zaborski

The aim of the present study was to verify whether artificial neural networks (ANN) may be an effective tool for predicting the culling reasons in cows based on routinely collected first-lactation records. Data on Holstein-Friesian cows culled in Poland between 2017 and 2018 were used in the present study. A general discriminant analysis (GDA) was applied as a reference method for ANN. Considering all predictive performance measures, ANN were the most effective in predicting the culling of cows due to old age (99.76–99.88% of correctly classified cases). In addition, a very high correct classification rate (99.24–99.98%) was obtained for culling the animals due to reproductive problems. It is significant because infertility is one of the conditions that are the most difficult to eliminate in dairy herds. The correct classification rate for individual culling reasons obtained with GDA (0.00–97.63%) was, in general, lower than that for multilayer perceptrons (MLP). The obtained results indicated that, in order to effectively predict the previously mentioned culling reasons, the following first-lactation parameters should be used: calving age, calving difficulty, and the characteristics of the lactation curve based on Wood’s model parameters.


2017 ◽  
Vol 70 (4) ◽  
pp. 492-498 ◽  
Author(s):  
Leandro S Santos ◽  
Roberta M D Cardozo ◽  
Natália Moreiria Nunes ◽  
Andréia B Inácio ◽  
Ana Clarissa dos S Pires ◽  
...  

2003 ◽  
Vol 7 (5) ◽  
pp. 693-706 ◽  
Author(s):  
E. Gaume ◽  
R. Gosset

Abstract. Recently Feed-Forward Artificial Neural Networks (FNN) have been gaining popularity for stream flow forecasting. However, despite the promising results presented in recent papers, their use is questionable. In theory, their “universal approximator‿ property guarantees that, if a sufficient number of neurons is selected, good performance of the models for interpolation purposes can be achieved. But the choice of a more complex model does not ensure a better prediction. Models with many parameters have a high capacity to fit the noise and the particularities of the calibration dataset, at the cost of diminishing their generalisation capacity. In support of the principle of model parsimony, a model selection method based on the validation performance of the models, "traditionally" used in the context of conceptual rainfall-runoff modelling, was adapted to the choice of a FFN structure. This method was applied to two different case studies: river flow prediction based on knowledge of upstream flows, and rainfall-runoff modelling. The predictive powers of the neural networks selected are compared to the results obtained with a linear model and a conceptual model (GR4j). In both case studies, the method leads to the selection of neural network structures with a limited number of neurons in the hidden layer (two or three). Moreover, the validation results of the selected FNN and of the linear model are very close. The conceptual model, specifically dedicated to rainfall-runoff modelling, appears to outperform the other two approaches. These conclusions, drawn on specific case studies using a particular evaluation method, add to the debate on the usefulness of Artificial Neural Networks in hydrology. Keywords: forecasting; stream-flow; rainfall-runoff; Artificial Neural Networks


2013 ◽  
Vol 4 (2) ◽  
pp. 39-53 ◽  
Author(s):  
Thomas A. Woolman ◽  
John C. Yi

This study addresses the use of predictive modeling techniques; primarily feed-forward artificial neural networks as a tool for forecasting geological exploration targets for gold prospecting. It also provides evidence of effectiveness of using Business Intelligence systems to model pathfinder variables, anomaly detection, and forecasting to locate potential exploration sites for precious metals. The results indicate that the use of advanced Business Intelligence systems can be of extremely high value to the extractive minerals exploration industry.


Sign in / Sign up

Export Citation Format

Share Document