BP-Neural Network for Plate Number Recognition

2020 ◽  
pp. 1189-1199
Author(s):  
Jia Wang ◽  
Wei Qi Yan

The License Plate Recognition (LPR) as one crucial part of intelligent traffic systems has been broadly investigated since the boosting of computer vision techniques. The motivation of this paper is to probe in plate number recognition which is an important part of traffic surveillance events. In this paper, locating the number plate is based on edge detection and recognizing the plate numbers is worked on Back-Propagation (BP) Artificial Neural Network (ANN). Furthermore, the authors introduce the system implementation and take advantage of the well-known Matlab platform to delve how to accurately recognize plate numbers. There are 80 samples adopted to test and verify the proposed plate number recognition method. The experimental results demonstrate that the accuracy of the authors' character recognition is above 70%.

2016 ◽  
Vol 8 (3) ◽  
pp. 34-45 ◽  
Author(s):  
Jia Wang ◽  
Wei Qi Yan

The License Plate Recognition (LPR) as one crucial part of intelligent traffic systems has been broadly investigated since the boosting of computer vision techniques. The motivation of this paper is to probe in plate number recognition which is an important part of traffic surveillance events. In this paper, locating the number plate is based on edge detection and recognizing the plate numbers is worked on Back-Propagation (BP) Artificial Neural Network (ANN). Furthermore, the authors introduce the system implementation and take advantage of the well-known Matlab platform to delve how to accurately recognize plate numbers. There are 80 samples adopted to test and verify the proposed plate number recognition method. The experimental results demonstrate that the accuracy of the authors' character recognition is above 70%.


2020 ◽  
Vol 8 (4) ◽  
pp. 304-310
Author(s):  
Windra Swastika ◽  
Ekky Rino Fajar Sakti ◽  
Mochamad Subianto

Low-resolution images can be reconstructed into high-resolution images using the Super-resolution Convolution Neural Network (SRCNN) algorithm. This study aims to improve the vehicle license plate number's recognition accuracy by generating a high-resolution vehicle image using the SRCNN. The recognition is carried out by two types of character recognition methods: Tesseract OCR and SPNet. The training data for SRCNN uses the DIV2K dataset consisting of 900 images, while the training data for character recognition uses the Chars74 dataset. The high-resolution images constructed using SRCNN can increase the average accuracy of vehicle license plate number recognition by 16.9 % using Tesseract and 13.8 % with SPNet.


Character recognition algorithm is considered as a core component of License Plate Recognition (LPR) systems. Numerous methods for License Plate (LP) recognition have been developed in recent years. However, most of them are not advanced enough to recognize in complex background and still demand improvement. This paper introduces a novel system for LPR by analyzing vehicle images. Accurate segmentation of license plate and character extraction from the plate is accomplished. In the plate segmentation module, Hough transform is put forwarded to identify plate edges using line segments. Radon transform adjusts the skew between LP and the viewer, thereby improve the recognition result. Four features are extracted from the LP image, and best features are selected using feature-salience theory. Histogram projection is performed horizontally and vertically to isolate individual characters in the LP. Finally, Back Propagation Neural Network (BPNN) is used to identify the characters present in the LP. From experimental results, it is evident that the proposed system can recognize LP more efficiently and establish a good background for future advancements in LPR.


2015 ◽  
Vol 766-767 ◽  
pp. 1076-1084
Author(s):  
S. Kathiresan ◽  
K. Hariharan ◽  
B. Mohan

In this study, to predict the surface roughness of stainless steel-304 in Magneto rheological Abrasive flow finishing (MRAFF) process, an artificial neural network (ANN) and regression models have been developed. In this models, the parameters such as hydraulic pressure, current to the electromagnet and number of cycles were taken as variables of the model.Taguchi’s technique has been used for designing the experiments in order to observe the different values of surface roughness . A neural network with feed forward with the help of back propagation was made up of 27 input neurons, 7 hidden neurons and one output neuron. The 6 sets of experiments were randomly selected from orthogonal array for training and residuals were used to analyze the performance. To check the validity of regression model and to determine the significant parameter affecting the surface roughness, Analysis of variance (ANOVA) andF-test were made. The numerical analysis depict that the current to the electromagnet was an paramount parameter on surface roughness.Key words: MRAFF, ANN, Regression analysis


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


Sign in / Sign up

Export Citation Format

Share Document