Exploring a Downstream Demand Inference Strategy in a Decentralized Two-Level Supply Chain

Author(s):  
Youssef Tliche ◽  
Atour Taghipour ◽  
Béatrice Canel-Depitre

A coordination approach for forecast operations, known as downstream demand inference, enables an upstream actor to infer the demand information at his formal downstream actor without the need for information sharing. This approach was validated if the downstream actor uses the simple moving average (SMA) forecasting method. To answer an investigative question through other forecasting methods, the authors use the weighted moving average (WMA) method, whose weights are determined in this work thanks to the Newton's optimization of the upstream average inventory level. Starting from a two-level supply chain, the simulation results confirm the ability of the approach to reduce the mean squared error and the average inventory level, compared to a decentralized approach. However, the bullwhip effect is only improved after a certain threshold of the parameter of the forecasting method. Still within the framework of the investigation, they carry out a comparison study between the adoption of the SMA method and the WMA method. Finally, they generalize their results for a multi-level supply chain.

2012 ◽  
pp. 646-665
Author(s):  
Mehdi Najafi ◽  
Reza Zanjirani Farahani

In today’s world, all enterprises in a supply chain are attempting to increase both their and the supply chain’s efficiency and effectiveness. Therefore, identification and consideration of factors that prevent enterprises to attain their expected/desired levels of effectiveness are very important. Since bullwhip effect is one of these main factors, being aware of its reasons help enterprises decrease the severity of bullwhip effect by opting proper decisions. Now that forecasting method is one of the most important factors in increasing or decreasing the bullwhip effect, this chapter considers and compares the effects of various forecasting methods on the bullwhip effect. In fact, in this chapter, the effects of various forecasting methods, such as Moving Average, Exponential Smoothing, and Regression, in terms of their associated bullwhip effect, in a four echelon supply chain- including retailer, wholesaler, manufacturer, and supplier- are considered. Then, the bullwhip effect measure is utilized to compare the ineffectiveness of various forecasting methods. Owing to this, the authors generate two sets of demands in the two cases where the demand is constant (no trend) and has an increasing trend, respectively. Then, the chapter ranks the forecasting methods in these two cases and utilizes a statistical method to ascertain the significance of differences among the effects of various methods.


Author(s):  
Youssef Tliche ◽  
Atour Taghipour ◽  
Béatrice Canel-Depitre

The main objective of studying decentralized supply chains is to demonstrate that a better interfirm collaboration can lead to a better overall performance of the system. Many researchers studied a phenomenon called downstream demand inference (DDI), which presents an effective demand management strategy to deal with forecast problems. DDI allows the upstream actor to infer the demand received by the downstream one without information sharing. Recent study showed that DDI is possible with simple moving average (SMA) forecast method and was verified especially for an autoregressive AR(1) demand process. This chapter extends the strategy's results by developing mean squared error and average inventory level expressions for causal invertible ARMA(p,q) demand under DDI strategy, no information sharing (NIS), and forecast information sharing (FIS) strategies. The authors analyze the sensibility of the performance metrics in respect with lead-time, SMA, and ARMA(p,q) parameters, and compare DDI results with the NIS and FIS strategies' results.


2011 ◽  
Vol 383-390 ◽  
pp. 4125-4129
Author(s):  
Ling Tzu Tseng

Bullwhip Effect, Particle Swarm Optimization, Supply Chain, Demand Information Abstract. A deformation phenomenon occurring in business activity, called the bullwhip effect which comes from the demand information is not fully shared among the members of a supply chain, conducts the upstream manufacturer to excessively anticipate the demand capacity of the downstream retailer. The manufacturer improperly decides the amount of the products not only to raise the inventory cost on the way of poorly handling the actually downstream demand, but also to lose the chance of business deals due to its backordering. To cope with the bullwhip effect by taking into account the holding and backorder costs, an evolutionary method based on the Particle Swarm Optimization (PSO) algorithm to estimate the critical parameter, mean downstream demand, is proposed and computer validated in this paper such that the estimated inventory level could be close the really batch ordering of the manufacturer.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Junhai Ma ◽  
Liqing Zhu ◽  
Ye Yuan ◽  
Shunqi Hou

With the purpose of researching the bullwhip effect when there is a callback center in the supply chain system, this paper establishes a new supply chain model with callback structure, which has a material supplier, a manufacture, and two retailers. The manufacture and retailers all employ AR(1) demand processes and use order-up-to inventory policy when they make order decisions. Moving average forecasting method is used to measure the bullwhip effect of each retailer and manufacture. We investigate the impact of lead-times of retailers and manufacture, forecasting precision, callback index, and marketing share on the bullwhip effect of both retailers and manufacture. Then we use the method of numerical simulation to indicate the different parameters in this supply chain. Furthermore, this paper puts forward some suggestions to help the enterprises to control the bullwhip effect in the supply chain with callback structure.


Author(s):  
Meilita Tryana Sembiring ◽  
Feby Sanna Sibarani

PT. XYZ merupakan perusahaan yang bergerak dalam produksi produk – produk olahan teh. Perusahaan telah memproduksi berbagai varian the yakni bentuk mau pun jenis teh. Objek penelitian ini ialah the dalam kemasan botol kaca dengan ukuran 220 ml. Ukuran the tersebut dipilih berdasarkan akumulasi dari penjualan the tertinggi. Terdapat perbedaan pada prediksi jumlah produksi yang akan dilakukan. Prediksi jumlah produksi dapat dilakukan dengan melakukan peramalan permintaan serta penggunaan metode yang tepat. Rantai pasok yang diteliti pada PT. XYZ terdiri atas Manufaktur (Vendor), Kantor Penjualan, dan Dister. Awalnya peramalan dilakukan pada masing – masing level rantai pasok dengan metode peramalan yang berbeda – beda. Maka, diperlukan penyeragaman metode peramalan pada masing – masing pelaku rantai pasok. Berdasarkan pengujian metode peramalan yang dilakukan yakni metode Linear, Exponential Smoothing, Moving Average, dan Winter’sMethod. Diperoleh bahwa error terkecil terdapat pada metode peramalan Winter’s Method dengan parameter Level sebesar 0,5, Trend sebesar 0,2 dan Seasonal sebesar 0,6. Parameter error yang digunakan ialah MAPE, MAD, dan MSD. Hasil penelitian menunjukkan bahwa penggunaan metode peramalan yang tepat akan mengurangi dampak dari bullwhip effect yang terjadi pada PT. XYZ.   PT. XYZ is a company engaged in the production of processed tea products. The company has produced various variants of tea, that is the shape and type of tea. The object of this research is the 220 ml glass bottle packaging. The size of the tea is chosen based on the accumulation of the highest tea sales. There is a difference in the prediction of the amount of production to be carried out. Prediction of the amount of production can be done by forecasting demand and using appropriate methods. The supply chain studied at PT. XYZ consists of Manufacturing (Vendors), Sales Offices, and Disters. Initially forecasting is done at each level of the supply chain with different forecasting methods. Therefore, uniform forecasting methods are needed for each supply chain actor. Based on testing the forecasting method that is done namely the Linear method, Exponential Smoothing, Moving Average, and Winter’s Method. Obtained that the smallest error is found in the Winter’s Method forecasting method with a Level parameter of 0.5, a Trend of 0.2 and a Seasonal of 0.6. The error parameters used are MAPE, MAD, and MSD. The results showed that the use of appropriate forecasting methods would reduce the impact of the bullwhip effect that occurred at PT. XYZ


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Junhai Ma ◽  
Binshuo Bao ◽  
Xiaogang Ma

An important phenomenon in supply chain management which is known as the bullwhip effect suggests that demand variability increases as one moves up a supply chain. This paper contrasts the bullwhip effect for a two-stage supply chain consisting of one supplier and two retailers under three forecasting methods based on the market share. We can quantify the correlation coefficient between the two retailers clearly, in consideration of market share. The two retailers both employ the order-up-to inventory policy for replenishments. The bullwhip effect is measured, respectively, under the minimum mean squared error (MMSE), moving average (MA), and exponential smoothing (ES) forecasting methods. The effect of autoregressive coefficient, lead time, and the market share on a bullwhip effect measure is investigated by using algebraic analysis and numerical simulation. And the comparison of the bullwhip effect under three forecasting methods is conducted. The conclusion suggests that different forecasting methods and various parameters lead to different bullwhip effects. Hence, the corresponding forecasting method should be chosen by the managers under different parameters in practice.


Author(s):  
Mehdi Najafi ◽  
Reza Zanjirani Farahani

In today’s world, all enterprises in a supply chain are attempting to increase both their and the supply chain’s efficiency and effectiveness. Therefore, identification and consideration of factors that prevent enterprises to attain their expected/desired levels of effectiveness are very important. Since bullwhip effect is one of these main factors, being aware of its reasons help enterprises decrease the severity of bullwhip effect by opting proper decisions. Now that forecasting method is one of the most important factors in increasing or decreasing the bullwhip effect, this chapter considers and compares the effects of various forecasting methods on the bullwhip effect. In fact, in this chapter, the effects of various forecasting methods, such as Moving Average, Exponential Smoothing, and Regression, in terms of their associated bullwhip effect, in a four echelon supply chain- including retailer, wholesaler, manufacturer, and supplier- are considered. Then, the bullwhip effect measure is utilized to compare the ineffectiveness of various forecasting methods. Owing to this, the authors generate two sets of demands in the two cases where the demand is constant (no trend) and has an increasing trend, respectively. Then, the chapter ranks the forecasting methods in these two cases and utilizes a statistical method to ascertain the significance of differences among the effects of various methods.


2011 ◽  
Vol 60 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Sangmun Shin ◽  
Funda Samanlioglu ◽  
Byung Rae Cho ◽  
Margaret M. Wiecek

2018 ◽  
Vol 10 (12) ◽  
pp. 4863 ◽  
Author(s):  
Chao Huang ◽  
Longpeng Cao ◽  
Nanxin Peng ◽  
Sijia Li ◽  
Jing Zhang ◽  
...  

Photovoltaic (PV) modules convert renewable and sustainable solar energy into electricity. However, the uncertainty of PV power production brings challenges for the grid operation. To facilitate the management and scheduling of PV power plants, forecasting is an essential technique. In this paper, a robust multilayer perception (MLP) neural network was developed for day-ahead forecasting of hourly PV power. A generic MLP is usually trained by minimizing the mean squared loss. The mean squared error is sensitive to a few particularly large errors that can lead to a poor estimator. To tackle the problem, the pseudo-Huber loss function, which combines the best properties of squared loss and absolute loss, was adopted in this paper. The effectiveness and efficiency of the proposed method was verified by benchmarking against a generic MLP network with real PV data. Numerical experiments illustrated that the proposed method performed better than the generic MLP network in terms of root mean squared error (RMSE) and mean absolute error (MAE).


Sign in / Sign up

Export Citation Format

Share Document