Design of Adsorptive Heat Storage Devices
The chapter is devoted to prospects of application of adsorptive heat storage devices, principles of operating the adsorptive heat storage systems, design of adsorptive storage devices and main factors determining the design of adsorptive heat storage unit. Perspectives of application of adsorptive heat storage devices in heat supply systems were analyzed. Basic principles of operating of heat storage devices were considered. Adsorptive heat storage units operating in close and open modes were compared. Constructions of adsorptive heat storage units operating in open and close mode were described. An efficient algorithm for calculating the volume of the adsorptive thermal energy storage device for a decentralised heat supply system of a private house is suggested by authors. The following procedure of computation is proposed to involve: calculation of thermal load for heating including the determination of thermal losses through external fences, thermal losses due to infiltration and internal heat dissipation, the evaluation of maximal adsorption, adsorption heat, and determination of adsorbent mass and adsorbent volume. The maximal adsorption value is suggested to be calculated by the characteristics of the adsorbent, that is, its maximal adsorption or in the absence of data for a composite adsorbent, as a linear superposition for a mechanical mixture. The adsorbent mass is suggested to calculate as a ratio of a thermal load for heating and heat of adsorption. The adsorbent volume is calculated as ratio of mass and density of adsorbent. An evaluative calculation of the heat load for a private house was carried out with the proposed algorithm. Mass and volumes of conventional silica gels were compared with composite adsorbents ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' obtained by sol gel method developed by authors. Mass and volume of silica gels occur to surpass the suggested composite at least by 1.5 – 5 times. This is shown to result from higher maximal adsorption and heat of adsorption of suggested composite adsorbents. The optimal composition of the composite adsorbents ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' was determined according to the minimal volume of the layer of heat storage material. Both the lowest volume values and the highest efficiency of a composite adsorbents with a mass ratio of silica gel and Na2SO4 or CH3COONa 20: 80 are explained by the maximum value of adsorption heat. Suggested composite adsorbent ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' are shown to be promising for heat supply systems.