scholarly journals Fenômica

Author(s):  
Marcos Roberto dos Santos ◽  
Guilherme Afonso Madalozzo ◽  
José Maurício Cunha Fernandes ◽  
Rafael Rieder

Computer vision and image processing procedures could obtain crop data frequently and precisely, such as vegetation indexes, and correlating them with other variables, like biomass and crop yield. This work presents the development of a computer vision system for high-throughput phenotyping, considering three solutions: an image capture software linked to a low-cost appliance; an image-processing program for feature extraction; and a web application for results' presentation. As a case study, we used normalized difference vegetation index (NDVI) data from a wheat crop experiment of the Brazilian Agricultural Research Corporation. Regression analysis showed that NDVI explains 98.9, 92.8, and 88.2% of the variability found in the biomass values for crop plots with 82, 150, and 200 kg of N ha1 fertilizer applications, respectively. As a result, NDVI generated by our system presented a strong correlation with the biomass, showing a way to specify a new yield prediction model from the beginning of the crop.

2018 ◽  
Vol 1 (2) ◽  
pp. 17-23
Author(s):  
Takialddin Al Smadi

This survey outlines the use of computer vision in Image and video processing in multidisciplinary applications; either in academia or industry, which are active in this field.The scope of this paper covers the theoretical and practical aspects in image and video processing in addition of computer vision, from essential research to evolution of application.In this paper a various subjects of image processing and computer vision will be demonstrated ,these subjects are spanned from the evolution of mobile augmented reality (MAR) applications, to augmented reality under 3D modeling and real time depth imaging, video processing algorithms will be discussed to get higher depth video compression, beside that in the field of mobile platform an automatic computer vision system for citrus fruit has been implemented ,where the Bayesian classification with Boundary Growing to detect the text in the video scene. Also the paper illustrates the usability of the handed interactive method to the portable projector based on augmented reality.   © 2018 JASET, International Scholars and Researchers Association


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 343
Author(s):  
Kim Bjerge ◽  
Jakob Bonde Nielsen ◽  
Martin Videbæk Sepstrup ◽  
Flemming Helsing-Nielsen ◽  
Toke Thomas Høye

Insect monitoring methods are typically very time-consuming and involve substantial investment in species identification following manual trapping in the field. Insect traps are often only serviced weekly, resulting in low temporal resolution of the monitoring data, which hampers the ecological interpretation. This paper presents a portable computer vision system capable of attracting and detecting live insects. More specifically, the paper proposes detection and classification of species by recording images of live individuals attracted to a light trap. An Automated Moth Trap (AMT) with multiple light sources and a camera was designed to attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to as Moth Classification and Counting (MCC), based on deep learning analysis of the captured images, tracked and counted the number of insects and identified moth species. Observations over 48 nights resulted in the capture of more than 250,000 images with an average of 5675 images per night. A customized convolutional neural network was trained on 2000 labeled images of live moths represented by eight different classes, achieving a high validation F1-score of 0.93. The algorithm measured an average classification and tracking F1-score of 0.71 and a tracking detection rate of 0.79. Overall, the proposed computer vision system and algorithm showed promising results as a low-cost solution for non-destructive and automatic monitoring of moths.


2014 ◽  
Vol 644-650 ◽  
pp. 207-210
Author(s):  
Shuang Liu ◽  
Xiang Jie Kong ◽  
Ming Cai Shan

Binocular parallax vision system is a kind of computer vision technology. Two cameras on different locations can get two different pictures of same object. The space position of the object can be calculated by the parallax information of two different pictures. The binocular parallax vision technology includes cameras calibration, image processing, and stereo matching analysis. The paper will introduce the inside and outside parameters calibration methods, and combing the traffic applications, designed the calibrating scheme. The parameters that obtained according to the scheme can meet the demands of measuring the vehicle distance. The high precision can meet the needs of intelligent transportation vehicles in a security vehicles spacing survey, which is an effective way for measuring the front car distance.


2020 ◽  
Vol 26 (3) ◽  
pp. 390-398
Author(s):  
Philippe Solano Toledo Silva ◽  
Alessandro Reinaldo Zabotto ◽  
Patrick Luan Ferreira dos Santos ◽  
Matheus Vinícius Leal do Nascimento ◽  
Armando Reis Tavares ◽  
...  

Abstract The sewage sludge is a low-cost material and sustainable alternative to substitute chemical fertilizers on ornamental lawns and gardens. Thus, the objective was to evaluate the effects of the application of sewage sludge on the regrowth and ornamental traits of DiscoveryTM bermudagrass. The experiment was carried out during the fall/winter of 2019. The turf was removed and left the soil exposed for a new grass regrowth. The treatments applied were 0, 357, 714, 1,071 and 1,428 g m-2 sewage sludge spread evenly on the lawn in a single dose. The evaluations were carried out after 120 days and the soil solution (EC and NO3 -), Normalized difference vegetation index, root length, root + rhizome + stolon + leaves volume and digital image analysis were evaluated. The results showed that the increase of sewage sludge positively influenced the turfgrass development, both in the aesthetic aspect and on bermudagrass regrowth. The soil solution can show that the sludge increased the electrical conductivity and NO3- ions; however, it did not hinder the development of the lawn, even having positive correlations between these variables and the biometric evaluations of the plant. It is concluded that the dose of 1,428 g m-2 presented the best results for the evaluated characteristics, being the recommended one for use in the fertilization of bermudagrass DiscoveryTM.


2012 ◽  
Vol 23 (2) ◽  
pp. 139-172
Author(s):  
Abdullah Salman Alsalman Abdullah Salman Alsalman

Noting that Khartoum represents the most rapidly expanding city in the Sudan and taking into account that change detection operations are seldom , the present study has been initiated to attempt to produce work that synthesizes land use/land cover (LULC) to investigate change detection using GIS, remote sensing data and digital image processing techniques; estimate, evaluate and map changes that took place in the city from 1975 to 2003. The experiment used the techniques of visual inspection, write-function-memoryinsertion, image differencing, image transformation i.e. normalized difference vegetation index (NDVI), tasseled cap, principal component analysis (PCA), post-classification comparison and GIS. The results of all these various techniques were used by the authors to study change detection of the geographic locale of the test area. Image processing and GIS techniques were performed using Intergraph Image analyst 8.4 and GeoMedia professional version 6, ERDAS Imagine 8.7, and ArcGIS 9.2. Results obtained were discussed and analyzed in a comparative manner and a conclusion regarding the best method for change detection of the test area was derived.


2020 ◽  
Vol 12 (21) ◽  
pp. 3524
Author(s):  
Feng Gao ◽  
Martha C. Anderson ◽  
W. Dean Hively

Cover crops are planted during the off-season to protect the soil and improve watershed management. The ability to map cover crop termination dates over agricultural landscapes is essential for quantifying conservation practice implementation, and enabling estimation of biomass accumulation during the active cover period. Remote sensing detection of end-of-season (termination) for cover crops has been limited by the lack of high spatial and temporal resolution observations and methods. In this paper, a new within-season termination (WIST) algorithm was developed to map cover crop termination dates using the Vegetation and Environment monitoring New Micro Satellite (VENµS) imagery (5 m, 2 days revisit). The WIST algorithm first detects the downward trend (senescent period) in the Normalized Difference Vegetation Index (NDVI) time-series and then refines the estimate to the two dates with the most rapid rate of decrease in NDVI during the senescent period. The WIST algorithm was assessed using farm operation records for experimental fields at the Beltsville Agricultural Research Center (BARC). The crop termination dates extracted from VENµS and Sentinel-2 time-series in 2019 and 2020 were compared to the recorded termination operation dates. The results show that the termination dates detected from the VENµS time-series (aggregated to 10 m) agree with the recorded harvest dates with a mean absolute difference of 2 days and uncertainty of 4 days. The operational Sentinel-2 time-series (10 m, 4–5 days revisit) also detected termination dates at BARC but had 7% missing and 10% false detections due to less frequent temporal observations. Near-real-time simulation using the VENµS time-series shows that the average lag times of termination detection are about 4 days for VENµS and 8 days for Sentinel-2, not including satellite data latency. The study demonstrates the potential for operational mapping of cover crop termination using high temporal and spatial resolution remote sensing data.


2009 ◽  
Vol 09 (04) ◽  
pp. 495-510 ◽  
Author(s):  
WEIREN SHI ◽  
ZUOJIN LI ◽  
XIN SHI ◽  
ZHI ZHONG

The human vision system is a very sophisticated image processing and objects recognition mechanism. However, it is a challenge to simulate the human or animal vision system to automate visual function in machines, because it is difficult to account for the view-invariant perception of universals such as environmental objects or processes and the explicit perception of featural parts and wholes in visual scenes. In this paper, we first present an introduction to the importance of biologically inspired computer vision and review general and key vision functions from neuroscience perspective. And most significantly, we give an important summarization to and discussion on the specific applications of biologically inspired modeling, including biologically inspired image pre-processing, image perception, and objects recognition. In the end, we give some important and challenging topics of computer vision for future work.


Author(s):  
Abdon Francisco Aureliano Netto ◽  
Rodrigo Nogueira Martins ◽  
Guilherme Silverio Aquino De Souza ◽  
Fernando Ferreira Lima Dos Santos ◽  
Jorge Tadeu Fim Rosas

This study aimed to modify a webcam by replacing its near-infrared (NIR) blocking filter to a low-cost red, green and blue (RGB) filter for obtaining NIR images and to evaluate its performance in two agricultural applications. First, the sensitivity of the webcam to differentiate normalized difference vegetation index (NDVI) levels through five nitrogen (N) doses applied to the Batatais grass (Paspalum notatum Flugge) was verified. Second, images from maize crops were processed using different vegetation indices, and thresholding methods with the aim of determining the best method for segmenting crop canopy from the soil. Results showed that the webcam sensor was capable of detecting the effect of N doses through different NDVI values at 7 and 21 days after N application. In the second application, the use of thresholding methods, such as Otsu, Manual, and Bayes when previously processed by vegetation indices showed satisfactory accuracy (up to 73.3%) in separating the crop canopy from the soil.


Sign in / Sign up

Export Citation Format

Share Document