Mechanical Properties and Wear Behavior of Aluminum Grain Refined by Ti and Ti+B

Author(s):  
Ahmad Omar Mostafa

Grain refinement, by adding master alloys, is an important industrial process for aluminum casting operations. In this work, microstructure, microhardness, tensile properties, surface roughness and wear behavior of Al and both Al-0.15Ti and Al-0.05Ti-0.01B microalloys were investigated. The addition of Ti and B to pure Al reduced the grain size by 83%. The grain refinement effect was due to the presence of Al3Ti and TiB2 particles, which activated the columnar-to-equiaxed transition and improved both microhardness and tensile properties. The presence of both Al3Ti and TiB2 particles was confirmed using thermodynamic calculations. Average microhardness values increased form 39 HV for pure Al to 95 and 76 HV for Al-Ti and Al-Ti-B microalloys, respectively, by solid solution hardening. The enhanced wear behaviour of Al was due to the coarse-grained structure where the plastic deformation mechanism took place. Whereas, grain pull-out dominated the wear behavior of fine-grained specimens. It was concluded that the material with a smooth surface has high friction coefficient and low wear rate.

2012 ◽  
Vol 562-564 ◽  
pp. 238-241
Author(s):  
Z.Q Wang ◽  
D.L Yang ◽  
Z.X Yang ◽  
H.R Geng

In this paper, two types of Zn-Al-Ti-B-C master alloys were produced by a two-step method and were found to have good refinement effect for Zn-50Al alloy. SEM results show that TiC and TiB2 particles act as the nucleating center of α-Al grains in Zn-50Al alloy. The presence of TiAl3-xZnx phase in the matrix of Zn-Al-Ti-B-C master alloy was found to further enhance the refinement effect. The melt thermal-rate treatment process present good grain refinement effect for Zn-50Al alloy and it was further promoted by the addition of Zn-Al-Ti-B-C master alloy into Zn-Al matrix.


2011 ◽  
Vol 194-196 ◽  
pp. 2284-2289
Author(s):  
D. Kesavan ◽  
M. Kamaraj

The nickel based Colmonoy 5 alloy powder was deposited on 316 L (N) austenitic stainless steel substrate. In order to examine the effects of aging treatment on the wear behavior of a nickel based hardfacing alloy, the as-deposited coating was aged at 580°C for 5000h in ambient atmosphere. Coating microstructures were characterised by scanning and transmission electron microscopy. Sliding tests were conducted under self mated condition at room temperature and 550°C using a pin-on disc type apparatus. The wear loss of the aged coating was found to be higher than that of the as deposited coating. The coarse grained structure with carbide (Cr23C6) precipitation in the aged coating would account for the higher sliding wear loss. However, the aged coating, with reduced hardness exhibits similar wear behavior of as deposited coating during sliding at 550°C.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 862
Author(s):  
Muneer Baig ◽  
Asiful H. Seikh ◽  
Ateekh Ur Rehman ◽  
Jabair A. Mohammed ◽  
Faraz Hussain Hashmi ◽  
...  

The temperature effects on the microstructural evolution of a coarse-grained Al5083 alloy during equal channel angular pressing (ECAP), were studied at ambient and high temperatures. The microstructural evaluation was done using an EBSD (electron backscattering diffraction) process. The grain refinement occurred as the number of passes increased, which had a positive effect on its strength. Additionally, increasing the pressing temperature leads to a decrease in the new grain’s formation and an increase in the normal grain size in the third pass. This can be ascribed to the unwinding of strain similarity between the grains because of the continuous activity of dynamic recuperation and the grain limit sliding occurring at a higher temperature. The attainment of grain refinement is examined exhaustively in this study.


2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


2015 ◽  
Vol 1114 ◽  
pp. 3-8
Author(s):  
Nicolae Şerban ◽  
Doina Răducanu ◽  
Nicolae Ghiban ◽  
Vasile Dănuţ Cojocaru

The properties of ultra-fine grained materials are superior to those of corresponding conventional coarse grained materials, being significantly improved as a result of grain refinement. Equal channel angular pressing (ECAP) is an efficient method for modifying the microstructure by refining grain size via severe plastic deformation (SPD) in producing ultra-fine grained materials (UFG) and nanomaterials (NM). The grain sizes produced by ECAP processing are typically in the submicrometer range and this leads to high strength at ambient temperatures. ECAP is performed by pressing test samples through a die containing two channels, equal in cross-section and intersecting at a certain angle. The billet experiences simple shear deformation at the intersection, without any precipitous change in the cross-section area because the die prevents lateral expansion and therefore the billet can be pressed more than once and it can be rotated around its pressing axis during subsequent passes. After ECAP significant grain refinement occurs together with dislocation strengthening, resulting in a considerable enhancement in the strength of the alloys. A commercial AlMgSi alloy (AA6063) was investigated in this study. The specimens were processed for a number of passes up to nine, using a die channel angle of 110°, applying the ECAP route BC. After ECAP, samples were cut from each specimen and prepared for metallographic analysis. The microstructure of the ECAP-ed and as-received material was investigated using optical (OLYMPUS – BX60M) and SEM microscopy (TESCAN VEGA II – XMU). It was determined that for the as-received material the microstructure shows a rough appearance, with large grains of dendritic or seaweed aspect and with a secondary phase at grain boundaries (continuous casting structure). For the ECAP processed samples, the microstructure shows a finished aspect, with refined, elongated grains, also with crumbled and uniformly distributed second phase particles after a typical ECAP texture.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3988
Author(s):  
Fátima Ternero ◽  
Pedro M. Amaral ◽  
Jorge Cruz Fernandes ◽  
Luís Guerra Rosa

A type of disc-on-plate test methodology was used to determine the wear behavior of metallic binders employed in the manufacturing of diamond impregnated tools. The disc consists of a special circular wheel that allows the binder materials alone (i.e., without diamond, but sintered under conditions identical to those of the complete tool) to be tested against a plate of stone material under pre-determined testing conditions. The testing conditions are intended to be equivalent to those used in the industrial processes. Using plates of five types of granite and one type of marble, this work comprises wear tests of 15 different types of metallic binders and two sintering modes conducted under, at least, three different values of contact-force. The analysis of the results demonstrated that the wear of the binders can be related to their mechanical properties through an empirical expression. The larger the difference between the characteristics of the tribological pair (binder versus stone), the higher is the correlation between the experimental wear data and the values given by the empirical expression. The relationships presented in this work allow predicting the wear behavior of the binder, and therefore may help in the design process of diamond tools. There was a clear difference between the wear behavior of metallic binders when they were employed against the two main classes of stone under analysis (marble and granite).


Sign in / Sign up

Export Citation Format

Share Document